Interop message passing tutorial
Overview
This tutorial demonstrates how to implement cross-chain communication within the Superchain ecosystem. You'll build a complete
message passing system that enables different chains to interact with each other using the L2ToL2CrossDomainMessenger
contract.
What You'll Build
- A Greeter contract that stores and updates messages
- A GreetingSender contract that sends cross-chain messages
- A TypeScript application to relay messages between chains
What you'll learn
- How to deploy contracts across different chains
- How to implement cross-chain message passing
- How to handle sender verification across chains
- How to relay messages manually between chains
This tutorial provides step-by-step instructions for implementing cross-chain messaging. For a conceptual overview, see the message passing explainer.
In this tutorial, you will learn how to use the L2ToL2CrossDomainMessenger
(opens in a new tab) contract to pass messages between interoperable blockchains.
Prerequisites
Before starting this tutorial, ensure your development environment meets the following requirements:
Technical knowledge
- Intermediate Solidity programming
- Basic TypeScript knowledge
- Understanding of smart contract development
- Familiarity with blockchain concepts
Development environment
- Unix-like operating system (Linux, macOS, or WSL for Windows)
- Node.js version 16 or higher
- Git for version control
Required tools
The tutorial uses these primary tools:
- Foundry: For smart contract development
- Supersim: For local blockchain simulation
- TypeScript: For implementation
- Viem: For blockchain interaction
Setting up your development environment
Follow the Installation Guide to install:
- Foundry for smart contract development
- Supersim for local blockchain simulation
Verify your installation:
forge --version
supersim --version
Implementing onchain message passing (in Solidity)
The implementation consists of three main components:
- Greeter Contract: Deployed on
Chain B
, receives and stores messages. - GreetingSender Contract: Deployed on
Chain A
, initiates cross-chain messages. - Message relay system: Ensures message delivery between chains.
For development purposes, we'll first use autorelay mode to handle message execution automatically. Later sections cover manual message relaying for production environments.
Setting up test networks
-
In the directory where Supersim is installed, start it with autorelay.
./supersim --interop.autorelay
Supersim creates three
anvil
blockchains:Role ChainID RPC URL L1 900 http://127.0.0.1:8545 (opens in a new tab) OPChainA 901 http://127.0.0.1:9545 (opens in a new tab) OPChainB 902 http://127.0.0.1:9546 (opens in a new tab) -
In a separate shell, store the configuration in environment variables.
USER_ADDR=0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266 PRIV_KEY=0xac0974bec39a17e36ba4a6b4d238ff944bacb478cbed5efcae784d7bf4f2ff80 RPC_L1=http://localhost:8545 RPC_A=http://localhost:9545 RPC_B=http://localhost:9546
Sanity check
To verify that the chains are running, check the balance of $USER_ADDR
.
cast balance --ether $USER_ADDR --rpc-url $RPC_L1
cast balance --ether $USER_ADDR --rpc-url $RPC_A
cast balance --ether $USER_ADDR --rpc-url $RPC_B
Create the contracts
-
Create a new Foundry project.
mkdir onchain-code cd onchain-code forge init
-
In
src/Greeter.sol
put this file. This is a variation on Hardhat's Greeter contract (opens in a new tab).//SPDX-License-Identifier: MIT pragma solidity ^0.8.0; contract Greeter { string greeting; event SetGreeting( address indexed sender, // msg.sender string greeting ); function greet() public view returns (string memory) { return greeting; } function setGreeting(string memory _greeting) public { greeting = _greeting; emit SetGreeting(msg.sender, _greeting); } }
-
Deploy the
Greeter
contract to Chain B and store the resulting contract address in theGREETER_B_ADDR
environment variable.GREETER_B_ADDR=`forge create --rpc-url $RPC_B --private-key $PRIV_KEY Greeter --broadcast | awk '/Deployed to:/ {print $3}'`
Explanation
The command that deploys the contract is:
forge create --rpc-url $RPC_B --private-key $PRIV_KEY Greeter --broadcast
The command output gives us the deployer address, the address of the new contract, and the transaction hash:
Deployer: 0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266
Deployed to: 0x5FC8d32690cc91D4c39d9d3abcBD16989F875707
Transaction hash: 0xf155d360ec70ee10fe0e02d99c16fa5d6dc2a0e79b005fec6cbf7925ff547dbf
The awk
(opens in a new tab) command looks for the line that has Deployed to:
and writes the third word in that line, which is the address.
awk '/Deployed to:/ {print $3}'
Finally, in UNIX (including Linux and macOS) the when the command line includes backticks (```), the shell executes the code between the backticks and puts the output, in this case the contract address, in the command. So we get.
GREETER_B_ADDR=<the address>
Sanity check
Run these commands to verify the contract works. The first and third commands retrieve the current greeting, while the second command updates it.
cast call --rpc-url $RPC_B $GREETER_B_ADDR "greet()" | cast --to-ascii
cast send --private-key $PRIV_KEY --rpc-url $RPC_B $GREETER_B_ADDR "setGreeting(string)" Hello
cast call --rpc-url $RPC_B $GREETER_B_ADDR "greet()" | cast --to-ascii
-
Install the Optimism Solidity libraries into the project.
cd lib npm install @eth-optimism/contracts-bedrock cd .. echo @eth-optimism/=lib/node_modules/@eth-optimism/ >> remappings.txt
-
The
@eth-optimism/contracts-bedrock
(opens in a new tab) library does not have the Interop Solidity code yet. Run these commands to add it.mkdir -p lib/node_modules/@eth-optimism/contracts-bedrock/interfaces/L2 wget https://raw.githubusercontent.com/ethereum-optimism/optimism/refs/heads/develop/packages/contracts-bedrock/interfaces/L2/IL2ToL2CrossDomainMessenger.sol mv IL2ToL2CrossDomainMessenger.sol lib/node_modules/@eth-optimism/contracts-bedrock/interfaces/L2
-
Create
src/GreetingSender.sol
.//SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { Predeploys } from "@eth-optimism/contracts-bedrock/src/libraries/Predeploys.sol"; import { IL2ToL2CrossDomainMessenger } from "@eth-optimism/contracts-bedrock/interfaces/L2/IL2ToL2CrossDomainMessenger.sol"; import { Greeter } from "src/Greeter.sol"; contract GreetingSender { IL2ToL2CrossDomainMessenger public immutable messenger = IL2ToL2CrossDomainMessenger(Predeploys.L2_TO_L2_CROSS_DOMAIN_MESSENGER); address immutable greeterAddress; uint256 immutable greeterChainId; constructor(address _greeterAddress, uint256 _greeterChainId) { greeterAddress = _greeterAddress; greeterChainId = _greeterChainId; } function setGreeting(string calldata greeting) public { bytes memory message = abi.encodeCall( Greeter.setGreeting, (greeting) ); messenger.sendMessage(greeterChainId, greeterAddress, message); } }
Explanation
function setGreeting(string calldata greeting) public {
bytes memory message = abi.encodeCall(
Greeter.setGreeting,
(greeting)
);
messenger.sendMessage(greeterChainId, greeterAddress, message);
}
This function encodes a call to setGreeting
and sends it to a contract on another chain.
abi.encodeCall(Greeter.setGreeting, (greeting))
constructs the calldata (opens in a new tab) by encoding the function selector and parameters.
The encoded message is then passed to messenger.sendMessage
, which forwards it to the destination contract (greeterAddress
) on the specified chain (greeterChainId
).
This ensures that setGreeting
is executed remotely with the provided greeting
value (as long as there is an executing message to relay it).
-
Deploy
GreetingSender
to chain A.GREETER_A_ADDR=`forge create --rpc-url $RPC_A --private-key $PRIV_KEY --broadcast GreetingSender --constructor-args $GREETER_B_ADDR 902 | awk '/Deployed to:/ {print $3}'`
Send a message
Send a greeting from chain A to chain B.
cast call --rpc-url $RPC_B $GREETER_B_ADDR "greet()" | cast --to-ascii
cast send --private-key $PRIV_KEY --rpc-url $RPC_A $GREETER_A_ADDR "setGreeting(string)" "Hello from chain A"
sleep 2
cast call --rpc-url $RPC_B $GREETER_B_ADDR "greet()" | cast --to-ascii
The sleep
call is because the message is not relayed until the next chain B block, which can take up to two seconds.
Sender information
Run this command to view the events to see who called setGreeting
.
cast logs --rpc-url $RPC_B 'SetGreeting(address,string)'
The sender information is stored in the second event topic.
However, for cross-chain messages, this value corresponds to the local L2ToL2CrossDomainMessenger
contract address (4200000000000000000000000000000000000023
), making it ineffective for identifying the original sender.
In this section we change Greeter.sol
to emit a separate event in it receives a cross domain message, with the sender's identity (address and chain ID).
Modify the Greeter contract
-
Modify
src/Greeter.sol
to this code.//SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { Predeploys } from "@eth-optimism/contracts-bedrock/src/libraries/Predeploys.sol"; import { IL2ToL2CrossDomainMessenger } from "@eth-optimism/contracts-bedrock/interfaces/L2/IL2ToL2CrossDomainMessenger.sol"; contract Greeter { IL2ToL2CrossDomainMessenger public immutable messenger = IL2ToL2CrossDomainMessenger(Predeploys.L2_TO_L2_CROSS_DOMAIN_MESSENGER); string greeting; event SetGreeting( address indexed sender, // msg.sender string greeting ); event CrossDomainSetGreeting( address indexed sender, // Sender on the other side uint256 indexed chainId, // ChainID of the other side string greeting ); function greet() public view returns (string memory) { return greeting; } function setGreeting(string memory _greeting) public { greeting = _greeting; emit SetGreeting(msg.sender, _greeting); if (msg.sender == Predeploys.L2_TO_L2_CROSS_DOMAIN_MESSENGER) { (address sender, uint256 chainId) = messenger.crossDomainMessageContext(); emit CrossDomainSetGreeting(sender, chainId, _greeting); } } }
Explanation
if (msg.sender == Predeploys.L2_TO_L2_CROSS_DOMAIN_MESSENGER) {
(address sender, uint256 chainId) =
messenger.crossDomainMessageContext();
emit CrossDomainSetGreeting(sender, chainId, _greeting);
}
If we see that we got a message from L2ToL2CrossDomainMessenger
, we call L2ToL2CrossDomainMessenger.crossDomainMessageContext
(opens in a new tab).
-
Redeploy the contracts. Because the address of
Greeter
is immutable inGreetingSender
, we need to redeploy both contracts.GREETER_B_ADDR=`forge create --rpc-url $RPC_B --private-key $PRIV_KEY Greeter --broadcast | awk '/Deployed to:/ {print $3}'` GREETER_A_ADDR=`forge create --rpc-url $RPC_A --private-key $PRIV_KEY --broadcast GreetingSender --constructor-args $GREETER_B_ADDR 902 | awk '/Deployed to:/ {print $3}'`
Verify you can see cross chain sender information
-
Set the greeting through
GreetingSender
.cast call --rpc-url $RPC_B $GREETER_B_ADDR "greet()" | cast --to-ascii cast send --private-key $PRIV_KEY --rpc-url $RPC_A $GREETER_A_ADDR "setGreeting(string)" "Hello from chain A, with a CrossDomainSetGreeting event" sleep 2 cast call --rpc-url $RPC_B $GREETER_B_ADDR "greet()" | cast --to-ascii
-
Read the log entries.
cast logs --rpc-url $RPC_B 'CrossDomainSetGreeting(address,uint256,string)' echo $GREETER_A_ADDR echo 0x385 | cast --to-dec
See that the second topic (the first indexed log parameter) is the same as
$GREETER_A_ADDR
. The third topic is0x385=901
, which is the chain ID for chain A.
Implement manual message relaying
So far we relied on --interop.autorelay
to send the executing messages to chain B.
But we only have it because we're using a development system.
In production we will not have this, we need to create our own executing messages.
Set up
We are going to use a Node (opens in a new tab) project, to be able to get executing messages from the command line. We use TypeScript (opens in a new tab) to have type safety combined with JavaScript functionality.
-
Initialize a new Node project.
mkdir ../offchain-code cd ../offchain-code npm init -y npm install --save-dev -y viem tsx @types/node @eth-optimism/viem mkdir src
-
Edit
package.json
to add thestart
script.{ "name": "offchain-code", "version": "1.0.0", "main": "index.js", "scripts": { "test": "echo \"Error: no test specified\" && exit 1", "start": "tsx src/app.mts" }, "keywords": [], "author": "", "license": "ISC", "type": "commonjs", "description": "", "devDependencies": { "@eth-optimism/viem": "^0.3.2", "@types/node": "^22.13.1", "tsx": "^4.19.2", "viem": "^2.22.23" } }
-
Export environment variables. This is necessary because those variables are currently limited to the shell process. We need them in the Node process that the shell creates.
export GREETER_A_ADDR GREETER_B_ADDR PRIV_KEY
Sanity check
-
Create a simple
src/app.mts
file.console.log(`Greeter A ${process.env.GREETER_A_ADDR}`) console.log(`Greeter B ${process.env.GREETER_B_ADDR}`)
-
Run the program.
npm run start
Send a greeting
-
Link the compiled versions of the onchain code, which include the ABI, to the source code.
cd src ln -s ../../onchain-code/out/Greeter.sol/Greeter.json . ln -s ../../onchain-code/out/GreetingSender.sol/GreetingSender.json . cd ..
-
Create or replace
src/app.mts
with this code.import { createWalletClient, http, defineChain, publicActions, getContract, Address, } from 'viem' import { privateKeyToAccount } from 'viem/accounts' import { supersimL2A, supersimL2B } from '@eth-optimism/viem/chains' import greeterData from './Greeter.json' import greetingSenderData from './GreetingSender.json' const account = privateKeyToAccount(process.env.PRIV_KEY as `0x${string}`) const walletA = createWalletClient({ chain: supersimL2A, transport: http(), account }).extend(publicActions) const walletB = createWalletClient({ chain: supersimL2B, transport: http(), account }).extend(publicActions) const greeter = getContract({ address: process.env.GREETER_B_ADDR as Address, abi: greeterData.abi, client: walletB }) const greetingSender = getContract({ address: process.env.GREETER_A_ADDR as Address, abi: greetingSenderData.abi, client: walletA }) const txnBHash = await greeter.write.setGreeting(["Greeting directly to chain B"]) await walletB.waitForTransactionReceipt({hash: txnBHash}) const greeting1 = await greeter.read.greet() console.log(`Chain B Greeting: ${greeting1}`) const txnAHash = await greetingSender.write.setGreeting(["Greeting through chain A"]) await walletA.waitForTransactionReceipt({hash: txnAHash}) const greeting2 = await greeter.read.greet() console.log(`Chain A Greeting: ${greeting2}`)
-
Run the program, see that a greeting from chain A is relayed to chain B.
npm start
Rerun supersim
Now we need to rerun Supersim without autorelay.
-
In the window that runs Supersim, stop it and restart with this command:
./supersim
-
In the window you used for your earlier tests, redeploy the contracts. Export the addresses so we'll have them in JavaScript
cd ../onchain-code export GREETER_B_ADDR=`forge create --rpc-url $RPC_B --private-key $PRIV_KEY Greeter --broadcast | awk '/Deployed to:/ {print $3}'` export GREETER_A_ADDR=`forge create --rpc-url $RPC_A --private-key $PRIV_KEY --broadcast GreetingSender --constructor-args $GREETER_B_ADDR 902 | awk '/Deployed to:/ {print $3}'` cd ../offchain-code
-
Rerun the JavaScript program.
npm start
See that the transaction to chain B changes the greeting, but the transaction to chain A does not.
> [email protected] start > tsx src/app.mts Chain B Greeting: Greeting directly to chain B Chain A Greeting: Greeting directly to chain B
Add manual relaying logic
-
Replace
src/app.mts
with:import { createWalletClient, http, publicActions, getContract, Address, } from 'viem' import { privateKeyToAccount } from 'viem/accounts' import { supersimL2A, supersimL2B } from '@eth-optimism/viem/chains' import { walletActionsL2, publicActionsL2, createInteropSentL2ToL2Messages, } from '@eth-optimism/viem' import greeterData from './Greeter.json' import greetingSenderData from './GreetingSender.json' const account = privateKeyToAccount(process.env.PRIV_KEY as `0x${string}`) const walletA = createWalletClient({ chain: supersimL2A, transport: http(), account }).extend(publicActions) .extend(publicActionsL2()) .extend(walletActionsL2()) const walletB = createWalletClient({ chain: supersimL2B, transport: http(), account }).extend(publicActions) .extend(publicActionsL2()) .extend(walletActionsL2()) const greeter = getContract({ address: process.env.GREETER_B_ADDR as Address, abi: greeterData.abi, client: walletB }) const greetingSender = getContract({ address: process.env.GREETER_A_ADDR as Address, abi: greetingSenderData.abi, client: walletA }) const txnBHash = await greeter.write.setGreeting( ["Greeting directly to chain B"]) await walletB.waitForTransactionReceipt({hash: txnBHash}) const greeting1 = await greeter.read.greet() console.log(`Chain B Greeting: ${greeting1}`) const txnAHash = await greetingSender.write.setGreeting( ["Greeting through chain A"]) const receiptA = await walletA.waitForTransactionReceipt({hash: txnAHash}) const sentMessage = (await createInteropSentL2ToL2Messages(walletA, { receipt: receiptA })) .sentMessages[0] const relayMsgTxnHash = await walletB.interop.relayMessage({ sentMessageId: sentMessage.id, sentMessagePayload: sentMessage.payload, }) const receiptRelay = await walletB.waitForTransactionReceipt( {hash: relayMsgTxnHash}) const greeting2 = await greeter.read.greet() console.log(`Chain A Greeting: ${greeting2}`)
Explanation
import {
walletActionsL2,
publicActionsL2,
createInteropSentL2ToL2Messages,
} from '@eth-optimism/viem'
Import from the @eth-optimism/viem
(opens in a new tab) package.
const walletA = createWalletClient({
chain: supersimL2A,
transport: http(),
account
}).extend(publicActions)
.extend(publicActionsL2())
.extend(walletActionsL2())
In addition to extending the wallets with Viem public actions (opens in a new tab), extend with the OP-Stack actions, both the public ones and the ones that require an account.
const receiptA = await walletA.waitForTransactionReceipt({hash: txnAHash})
To relay a message we need the information in the receipt. Also, we need to wait until the transaction with the relayed message is actually part of a block.
const sentMessage =
(await createInteropSentL2ToL2Messages(walletA, { receipt: receiptA }))
.sentMessages[0]
A single transaction can send multiple messages. But here we know we sent just one, so we look for the first one in the list.
const relayMsgTxnHash = await walletB.interop.relayMessage({
sentMessageId: sentMessage.id,
sentMessagePayload: sentMessage.payload,
})
const receiptRelay = await walletB.waitForTransactionReceipt(
{hash: relayMsgTxnHash})
Here we first send the relay message on chain B, and then wait for the receipt for it.
-
Rerun the JavaScript program, and see that the message is relayed.
npm start
Using devnet
The same contracts are deployed on the devnet. You can relay messages in exactly the same way you'd do it on Supersim.
Contract | Network | Address |
---|---|---|
Greeter | Devnet 1 | 0x1A183FCf61053B7dcd2322BbE766f7E1946d3718 (opens in a new tab) |
GreetingSender | Devnet 0 | 0x9De9f84a4EB3616B44CF1d68cD1A9098Df6cB25f (opens in a new tab) |
To modify the program to relay messages on devnet, follow these steps:
-
In
src/app.mts
, replace these lines to update the chains and contract addresses.Line number New content 9 import { interopAlpha0, interopAlpha1 } from '@eth-optimism/viem/chains'
23 chain: interopAlpha0,
31 chain: interopAlpha1,
39 address: "0x1A183FCf61053B7dcd2322BbE766f7E1946d3718",
45 address: "0x9De9f84a4EB3616B44CF1d68cD1A9098Df6cB25f",
-
Set
PRIV_KEY
to the private key of an address that has Sepolia ETH (opens in a new tab).export PRIV_KEY=0x<private key here>
-
Send ETH to the two L2 blockchains.
cast send --rpc-url https://endpoints.omniatech.io/v1/eth/sepolia/public --private-key $PRIV_KEY --value 0.001ether 0x7385d89d38ab79984e7c84fab9ce5e6f4815468a cast send --rpc-url https://endpoints.omniatech.io/v1/eth/sepolia/public --private-key $PRIV_KEY --value 0.001ether 0x55f5c4653dbcde7d1254f9c690a5d761b315500c
Wait a few minutes until you can see the ETH on your explorer (opens in a new tab).
-
Rerun the test.
npm start
-
You can see the transactions in a block explorer.
- The first transaction, which sets the greeting directly, on the
Greeter
contract on interop1 (opens in a new tab). - The second transaction, the initiation message for the cross chain greeting change, on the
GreetingSender
contract on interop0 (opens in a new tab). - The third transaction, the executing message for the cross chain greeting change, on the
Greeter
contract on interop1 as an internal transaction (opens in a new tab).
- The first transaction, which sets the greeting directly, on the
Debugging
To see what messages were relayed by a specific transaction you can use this code:
import { decodeRelayedL2ToL2Messages } from '@eth-optimism/viem'
const decodedRelays = decodeRelayedL2ToL2Messages(
{receipt: receiptRelay})
console.log(decodedRelays)
console.log(decodedRelays.successfulMessages[0].log)
Next steps
- Review the Superchain Interop Explainer for answers to common questions about interoperability.
- Read the Message Passing Explainer to understand what happens "under the hood".
- Write a revolutionary app that uses multiple blockchains within the Superchain.