
Base Fault Proofs no MIPS Security Review

Auditors

Xmxanuel, Lead Security Researcher

Desmond Ho, Lead Security Researcher

0xLadboy, Security Researcher

Cryptara, Associate Security Researcher

Report prepared by: Lucas Goiriz

August 14, 2024

Contents

1 About Spearbit 2

2 Introduction 2

3 Risk classification 2
3.1 Impact . 2
3.2 Likelihood . 2
3.3 Action required for severity levels . 2

4 Executive Summary 3

5 Findings 4
5.1 Medium Risk . 4

5.1.1 PreimageOracle.loadPrecompilePreimagePart an outOfGas error in the precompile will
overwrite correct preimageParts . 4

5.1.2 Invalid Ancestor Lookup Leading to Out-of-Bounds Array Access 5
5.1.3 An attacker with more available funds can counter an honest rootClaim defender 8
5.1.4 challengeRootL2Block can be abused to block honest gamer from receiving the bond. . . . 9

5.2 Low Risk . 10
5.2.1 FaultDisputeGame.step function can be called after parentClaim is resolved 10
5.2.2 challengeRootL2Block called between resolveClaim and resolve would result in incorrect

GameStatus and state . 10
5.2.3 Extension period not applied correctly for next root when SPLIT_DEPTH is set to 1 or less . . . 11
5.2.4 Inconsistent _partOffset check and memory boundaries in loadLocalData function 14
5.2.5 Preimage proposals can be initialized multiple times . 15
5.2.6 _clockExtension and _maxClockDuration are not validated correctly in DisputeGame con-

structor . 15
5.3 Gas Optimization . 16

5.3.1 Gas optimizations . 16
5.4 Informational . 17

5.4.1 Add more integration tests with Big Stepper VM execution for DisputeGame#step 17
5.4.2 FaultDisputeGame no existing tests for subgames resolution at the same leftmostPosition 17
5.4.3 honest defender with limited funds can lose all their ETH if they play with the wrong game

strategy . 18
5.4.4 Simpler clean highest byte operation for PreimageOracle and PreimageKeylib 18
5.4.5 FaultDisputeGame.step incorrect comment about number of leaves calculation for each

execution trace subgame . 18
5.4.6 Discrepancies in handling extraData in dispute game . 19
5.4.7 Optimize check order to revert early for cost-efficient execution 20
5.4.8 Theoretical MAX_POSITION_BITLEN is larger . 21
5.4.9 Unexpected index notation in libraries . 21
5.4.10 Comment and Variable improvements . 21
5.4.11 Duplicate and Zero-Value Checks . 23
5.4.12 Immutable address validation on AnchorStateRegistry . 23

1

1 About Spearbit

Spearbit is a decentralized network of expert security engineers offering reviews and other security related services
to Web3 projects with the goal of creating a stronger ecosystem. Our network has experience on every part of the
blockchain technology stack, including but not limited to protocol design, smart contracts and the Solidity compiler.
Spearbit brings in untapped security talent by enabling expert freelance auditors seeking flexibility to work on
interesting projects together.

Learn more about us at spearbit.com

2 Introduction

Base is a secure and low-cost Ethereum layer-2 solution built to scale the userbase on-chain.

Disclaimer : This security review does not guarantee against a hack. It is a snapshot in time of fault-dispute-game
according to the specific commit. Any modifications to the code will require a new security review.

3 Risk classification

Severity level Impact: High Impact: Medium Impact: Low
Likelihood: high Critical High Medium
Likelihood: medium High Medium Low
Likelihood: low Medium Low Low

3.1 Impact

• High - leads to a loss of a significant portion (>10%) of assets in the protocol, or significant harm to a majority
of users.

• Medium - global losses <10% or losses to only a subset of users, but still unacceptable.

• Low - losses will be annoying but bearable--applies to things like griefing attacks that can be easily repaired
or even gas inefficiencies.

3.2 Likelihood

• High - almost certain to happen, easy to perform, or not easy but highly incentivized

• Medium - only conditionally possible or incentivized, but still relatively likely

• Low - requires stars to align, or little-to-no incentive

3.3 Action required for severity levels

• Critical - Must fix as soon as possible (if already deployed)

• High - Must fix (before deployment if not already deployed)

• Medium - Should fix

• Low - Could fix

2

https://spearbit.com

4 Executive Summary

Over the course of 14 days in total, Base engaged with Spearbit to review the dispute protocol. In this period of
time a total of 23 issues were found.

Summary

Project Name Base

Repository dispute

Commit 1f7081...3a3d

Type of Project Disputes, Proofs

Audit Timeline Jun 3rd to Jun 24th

The Optimism team has reviewed and acknowledged the findings highlighted by the researchers in the current
report.

Issues Found

Severity Count Fixed Acknowledged

Critical Risk 0 0 0

High Risk 0 0 0

Medium Risk 4 0 2

Low Risk 6 0 4

Gas Optimizations 1 0 0

Informational 12 0 0

Total 23 0 6

3

https://base.org
https://spearbit.com
https://github.com/ethereum-optimism/optimism
https://github.com/ethereum-optimism/optimism
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d

5 Findings

5.1 Medium Risk

5.1.1 PreimageOracle.loadPrecompilePreimagePart an outOfGas error in the precompile will overwrite cor-
rect preimageParts

Severity: Medium Risk

Context: PreimageOracle.sol#L335

Description: Alexis Williams from Coinbase initially identified this issue in the loadPrecompilePreimagePart

function during the engagement with Spearbit. The function calls any _precompile passed as a parameter for a
given _input.

function loadPrecompilePreimagePart(

uint256 _partOffset,

address _precompile,

bytes calldata _input

) external

The _partOffset variable defines which 32 bytes of the precompile returned result will be stored in a preim-

ageParts mapping. The key for the mapping is based on a keccak hash, including the _precompile address and
_input parameter. The function is public and can be called multiple times. A call with the same parameters should
produce again the same key and state updates.

If the precompile call reverts, the returned error would be stored in the preimageParts mapping instead. The
transaction itself would be successful (see the related test).

An attacker could call loadPrecompilePreimagePart with less gas to produce an outOfGas error in the precom-
pile. The 63/64 gas rule applies for staticcall and precompiles even when all the available gas() passed as
parameter.

// Call the precompile to get the result.

res := staticcall(

gas(), // forward all gas

_precompile,

add(20, ptr), // input ptr

_input.length,

0x0, // Unused as we don't copy anything

0x00 // don't copy anything

)

The loadPrecompilePreimagePart function can have enough gas left to update preimageParts mapping with
the outOfGas error. This means a successful preimage result can be overwritten with the outOfGas error for
some _partOffset in the preimageParts mapping. Given that the correct preimageParts mapping is needed to
reproduce the VM.step in a FaultDisputeGame.step it can lead to an incorrect outcome.

Recommendation: The function loadPrecompilePreimagePart should revert if an outOfGas error occurs in the
precompile instead of updating the state.

Coinbase: Acknowledged. We'll be fixing this issue on a later date.

4

https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/cannon/PreimageOracle.sol#L335
https://github.com/ethereum-optimism/optimism/blob/625054c384c3eae1559413ad1bca211157ba17f5/packages/contracts-bedrock/test/cannon/PreimageOracle.t.sol#L229

5.1.2 Invalid Ancestor Lookup Leading to Out-of-Bounds Array Access

Severity: Medium Risk

Context: FaultDisputeGame.sol#L271, FaultDisputeGame.sol#L278

Description: When finding an ancestor via the _findTraceAncestor function, the code allows specifying the
global flag, which limits the ancestor search to the split depth. When _global is set to false the function uses
the _pos.traceAncestorBounded(SPLIT_DEPTH) method. This method violates an invariant assumption: "It is
guaranteed that such a claim exists." In scenarios when SPLIT_DEPTH + 1 = MAX_DEPTH. The code, will not be
able to find a right-side node, causing the code to loop until reaching the root node. The root node, containing
type(uint32).max as its parentIndex, results in an out-of-bounds array access. This issue specifically arises
when the last game step is a defend action.

Proof of concept:

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.15;

import { Test } from "forge-std/Test.sol";

import "../../src/dispute/AnchorStateRegistry.sol";

import "../../src/dispute/DisputeGameFactory.sol";

import "../../src/dispute/FaultDisputeGame.sol";

import "../../src/dispute/lib/LibUDT.sol";

// oz clones library

import "@openzeppelin/contracts/proxy/Clones.sol";

contract WETHMock {

// balances

uint256 totalBalance;

mapping(address => uint256) public unlocks;

function deposit() external payable {

totalBalance += msg.value;

5

https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L271
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L278

}

function withdraw(uint256 amount) external {

// check unlocks

require(unlocks[msg.sender] >= amount, "WETHMock: insufficient unlocks");

totalBalance -= amount;

payable(msg.sender).transfer(amount);

}

function unlock(address to, uint256 amount) external {

unlocks[to] += amount;

}

}

contract POC is Test {

using Clones for address;

AnchorStateRegistry internal anchorStateRegistry;

DisputeGameFactory internal disputeGameFactory;

WETHMock internal weth;

address constant ADMIN = address(0x1);

function setUp() public {

disputeGameFactory = DisputeGameFactory(address(new DisputeGameFactory()).clone());

anchorStateRegistry = AnchorStateRegistry(address(new

AnchorStateRegistry(disputeGameFactory)).clone());,!

disputeGameFactory.initialize(ADMIN);

weth = new WETHMock();

}

function test_oob_in_findTraceAncestor() public {

vm.startPrank(ADMIN);

disputeGameFactory.setImplementation(

GameType.wrap(0),

IDisputeGame(address(new FaultDisputeGame(

GameType.wrap(0), // _gameType

Claim.wrap(0x0), // _absolutePrestate

2, // _maxGameDepth (max)

1, // _splitDepth

Duration.wrap(200), // _clockExtension

Duration.wrap(1000), // _maxClockDuration

IBigStepper(address(0)), // _vm

IDelayedWETH(address(weth)), // _weth

IAnchorStateRegistry(address(anchorStateRegistry)), // _anchorStateRegistry

0x123 // _l2ChainId

)))

);

vm.stopPrank();

bytes32 anchorRoot = bytes32(uint256(0x1234));

uint256 l2BlockNumber = 0x10;

AnchorStateRegistry.StartingAnchorRoot[] memory startingAnchorRoots = new

AnchorStateRegistry.StartingAnchorRoot[](1);,!

startingAnchorRoots[0] = AnchorStateRegistry.StartingAnchorRoot({

6

gameType: GameType.wrap(0),

outputRoot: OutputRoot({

root: Hash.wrap(anchorRoot),

l2BlockNumber: l2BlockNumber

})

});

anchorStateRegistry.initialize(

startingAnchorRoots

);

uint256 gameL2BlockNumber = 0x11;

bytes32 rootClaim = bytes32(uint256(0x1234));

bytes memory extraData = abi.encodePacked(gameL2BlockNumber);

FaultDisputeGame game = FaultDisputeGame(address(disputeGameFactory.create(

GameType.wrap(0),

Claim.wrap(rootClaim),

extraData

)));

Position disputePosition = Position.wrap(2); // 2 because we attack 1

uint256 amount = game.getRequiredBond(disputePosition);

vm.deal(address(0x1), 100 ether);

vm.deal(address(0x2), 100 ether);

vm.deal(address(0x3), 100 ether);

vm.deal(address(0x4), 100 ether);

// index 1

vm.prank(address(0x1));

game.move{value: amount}(

Claim.wrap(bytes32(uint256(rootClaim))),

0,

Claim.wrap(bytes32(uint256(0x2222))),

true

);

disputePosition = Position.wrap(4); // 4 because we attack 2

amount = game.getRequiredBond(disputePosition);

// index 2

vm.prank(address(0x2));

game.move{value: amount}(

Claim.wrap(bytes32(uint256(0x2222))),

1,

Claim.wrap(bytes32(uint256(1 << 248 | 0x4444))),

true

);

vm.prank(address(0x3));

game.step(

2,

false,

"",

""

);

}

7

}

Stack Trace:

...

[0] console::log("traceAncestorPos", 5) [staticcall]

� [Stop]

[0] console::log("ancestor.parentIndex", 0) [staticcall]

� [Stop]

[0] console::log("ancestor.parentIndex", 4294967295 [4.294e9]) [staticcall]

� [Stop]

� [Revert] panic: array out-of-bounds access (0x32)

� [Revert] panic: array out-of-bounds access (0x32)

� [Revert] panic: array out-of-bounds access (0x32)

Suite result: FAILED. 0 passed; 1 failed; 0 skipped; finished in 7.31ms (2.44ms CPU time)

Ran 1 test suite in 8.02s (7.31ms CPU time): 0 tests passed, 1 failed, 0 skipped (1 total tests)

Failing tests:

Encountered 1 failing test in test/cryptara/OOB_find.sol:POC

[FAIL. Reason: panic: array out-of-bounds access (0x32)] test_oob_in_findTraceAncestor() (gas: 6970940)

Recommendation: To resolve this issue, consider the following solutions:

1. Ensure MAX_DEPTH > SPLIT_DEPTH + 1 During Initialization:

• Add a validation check during the initialization process to ensure that MAX_DEPTH is always greater than
SPLIT_DEPTH + 1.

• This will guarantee that the ancestor parent with the start index is always present in the DAG.

2. Validate the Start Index for Parent Ancestor Lookup:

• Ensure that the start index for the parent ancestor lookup is valid.

• Implement additional checks to validate the start index, preventing invalid assumptions about the exis-
tence of DAG nodes.

Coinbase: Acknowledged. We'll be fixing this issue on a later date.

5.1.3 An attacker with more available funds can counter an honest rootClaim defender

Severity: Medium Risk

Context: FaultDisputeGame.sol#L319

Description: An attacker (challenger) with more funds available than an honest rootClaim defender can win the
Game with the status CHALLENGER.WINS even if the rootClaim provided by the honest defender is correct.

The attacker only needs to win one subgame that goes uncountered to counter the rootClaim.

This can be achieved by opening so many subGames with different incorrect claims at the same gameTree level
until the honest defender runs out of funds. The attacker would open new games at the same level (tree depth)
instead of continuing to play the existing subgames closer to the leaves.

Once the honest defender has no funds left, one subgame win by the attacker due to opponent timeout is enough
to counter the correct rootClaim.

We want to point out, that these are the technical mechanisms by which the honest defender would loss the
rootSubGame.

From a game-theoretical perspective such an attack would cost a lot of money, since all opened subgames with
incorrect claims if countered by the honest defender would result in a loss for the attacker.

The attacker could theoretically win the entire TVL available on the L2 and might be willing to lose a lot of subgames.

8

https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L319

On the other hand, anyone can support the honest defender team because it is free money to win and should
incentivise to provide the required liquidity. The other parties owning the TVL on the L2 have an incentive as well
to protect it.

Recommendation: Make it as easy as possible for honest actors to participate in the game by providing good
documentation and infrastructure.

Coinbase: Acknowledged. We'll be fixing this issue on a later date.

5.1.4 challengeRootL2Block can be abused to block honest gamer from receiving the bond.

Severity: Medium Risk

Context: FaultDisputeGame.sol#492

Description: In DisputeGame, if the function challengeRootL2Block is called successfully, the challenger wins
the root claim subgame and can receive the bond:

// Issue a special counter to the root claim. This counter will always win the root claim subgame, and

receive,!

// the bond from the root claimant.

l2BlockNumberChallenger = msg.sender;

l2BlockNumberChallenged = true;

When the root claim subgame is resolved, the priority of bond receiver goes to the l2BlockNumberChallenger
address:

// Distribute the bond to the appropriate party.

if (_claimIndex == 0 && l2BlockNumberChallenged) {

// Special case: If the root claim has been challenged with the `challengeRootL2Block` function,

// the bond is always paid out to the issuer of that challenge.

address challenger = l2BlockNumberChallenger;

_distributeBond(challenger, subgameRootClaim);

subgameRootClaim.counteredBy = challenger;

} else {

// If the parent was not successfully countered, pay out the parent's bond to the claimant.

// If the parent was successfully countered, pay out the parent's bond to the challenger.

_distributeBond(countered == address(0) ? subgameRootClaim.claimant : countered, subgameRootClaim);

// Once a subgame is resolved, we percolate the result up the DAG so subsequent calls to

// resolveClaim will not need to traverse this subgame.

subgameRootClaim.counteredBy = countered;

}

But consider that a malicious user proposes an output claim with an invalid l2 block number, an honest gamer
makes a challenge by constructing payload via attack and step function, then the honest gamer should be entitled
to receive the bond.

However, the malicious user spots the challenge and realizes he will lose their bond, they can always call chal-
lengeRootL2Block to win the root subgame, while the dispute game cannot be used to verify the withdraw trans-
action, the challengeRootL2Block function is abused to block the honest gamer from receiving the bond.

Recommendation: Consider highlighting that the bond receiver priority goes to the block number challenger and
encourage an honest gamer challenge the block number first.

Or if an honest gamer makes a valid challenge to defeat the malicious dispute game, the honest gamer should be
entitled to receive the bond first even the block number is challenged.

9

https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L492
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L532
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L643
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L643

5.2 Low Risk

5.2.1 FaultDisputeGame.step function can be called after parentClaim is resolved

Severity: Low Risk

Context: FaultDisputeGame.sol#L234

Description: The step function does not check the chess clock time. This means that the MAX_CLOCK_DURATION

could already have been reached and the parent claim could already be resolved as uncountered.

The step function would be executed successfully and would overwrite the parent.counteredBy = msg.sender;

but with no impact, since the the parent subgame has been already resolved.

The msg.sender would not receive a reward, since the payout already did happen.

Recommendation: Add a chess clock check to the step function or allow to call step only if the parent has not
been resolved.

if (resolvedSubgames[_claimIndex]) revert ErrorParentResolved();

5.2.2 challengeRootL2Block called between resolveClaim and resolve would result in incorrect GameSta-
tus and state

Severity: Low Risk

Context: FaultDisputeGame.sol#L492

Description: If the defender of the rootClaim proposed an incorrect l2BlockNumber() anyone can challenge this
by calling challengeRootL2Block by providing the preimage of the output root together with L2 block header to
proof that l2BlockNumber is incorrect.

A successful challengeRootL2Block should always lead to the following outcome:

• After final resolve of the game:

GameStatus.CHALLENGER_WINS;

• The caller of the challengeRootL2Block should receive the bond from the root sub game. The

l2BlockNumberChallenger = msg.sender; // caller of `challengeRootL2Block`

l2BlockNumberChallenged = true;

Problem: If the called between resolveClaim and resolve. The resolvedSubgames[0] is already resolved.

The implications would be GameStatus can be CHALLENGER_WINS or DEFENDER_WINS independent of the chal-

lengeRootL2Block outcome.

The caller of challengeRootL2Block would receive no rewards, since the payout already happend.

However, the status would still updated for l2BlockNumberChallenger and l2BlockNumberChallenged.

This can lead to the final game state which should never be the case:

l2BlockNumberChallenged = true;

status = GameStatus.DEFENDER_WINS;

Recommendation: Don't allow challengeRootL2Block at this late stage anymore by adding the following check.

if (resolvedSubgames[0]) revert ErrorRootGameResolved();

Alternatively, if it should be still allowed the resolve function should consider the l2BlockNumberChallenged

boolean and ensure the GameStatus should be CHALLENGER_WINS.

The challengeRootL2Block would only miss the payout.

10

https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L234
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L492

5.2.3 Extension period not applied correctly for next root when SPLIT_DEPTH is set to 1 or less

Severity: Low Risk

Context: FaultDisputeGame.sol#L379-L380

Description: When SPLIT_DEPTH is set to 1, the extension period for the next root is not considered, resulting
in the root claim not receiving the intended extension time. This occurs because the calculation SPLIT_DEPTH -

1 results in 0, leading to the nextPositionDepth value being 0, and hence no extension period is applied. This
discrepancy results in the subgame root at position 2 having a normal extension period instead of the extended
time it should receive. Moreover, if the SPLIT_DEPTH is set to 0, the SPLIT_DEPTH - 1 statement will underflow and
always revert, leaving the state unusable until the clock time expires.

Proof of concept:

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.15;

import { Test } from "forge-std/Test.sol";

import "../../src/dispute/AnchorStateRegistry.sol";

import "../../src/dispute/DisputeGameFactory.sol";

import "../../src/dispute/FaultDisputeGame.sol";

import "../../src/dispute/lib/LibUDT.sol";

// oz clones library

import "@openzeppelin/contracts/proxy/Clones.sol";

contract WETHMock {

// balances

uint256 totalBalance;

mapping(address => uint256) public unlocks;

function deposit() external payable {

totalBalance += msg.value;

}

function withdraw(uint256 amount) external {

// check unlocks

require(unlocks[msg.sender] >= amount, "WETHMock: insufficient unlocks");

totalBalance -= amount;

payable(msg.sender).transfer(amount);

}

11

https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L379-L380

function unlock(address to, uint256 amount) external {

unlocks[to] += amount;

}

}

contract POC is Test {

using Clones for address;

AnchorStateRegistry internal anchorStateRegistry;

DisputeGameFactory internal disputeGameFactory;

WETHMock internal weth;

address constant ADMIN = address(0x1);

function setUp() public {

disputeGameFactory = DisputeGameFactory(address(new DisputeGameFactory()).clone());

anchorStateRegistry = AnchorStateRegistry(address(new

AnchorStateRegistry(disputeGameFactory)).clone());,!

disputeGameFactory.initialize(ADMIN);

weth = new WETHMock();

}

function test_valid_game_split_1_no_duration() public {

vm.startPrank(ADMIN);

disputeGameFactory.setImplementation(

GameType.wrap(0),

IDisputeGame(address(new FaultDisputeGame(

GameType.wrap(0), // _gameType

Claim.wrap(0x0), // _absolutePrestate

5, // _maxGameDepth (max)

1, // _splitDepth

Duration.wrap(200), // _clockExtension

Duration.wrap(1000), // _maxClockDuration

IBigStepper(address(0)), // _vm

IDelayedWETH(address(weth)), // _weth

IAnchorStateRegistry(address(anchorStateRegistry)), // _anchorStateRegistry

0x123 // _l2ChainId

)))

);

vm.stopPrank();

bytes32 anchorRoot = bytes32(uint256(0x1234));

uint256 l2BlockNumber = 0x10;

AnchorStateRegistry.StartingAnchorRoot[] memory startingAnchorRoots = new

AnchorStateRegistry.StartingAnchorRoot[](1);,!

startingAnchorRoots[0] = AnchorStateRegistry.StartingAnchorRoot({

gameType: GameType.wrap(0),

outputRoot: OutputRoot({

root: Hash.wrap(anchorRoot),

l2BlockNumber: l2BlockNumber

})

});

12

anchorStateRegistry.initialize(

startingAnchorRoots

);

uint256 gameL2BlockNumber = 0x11;

bytes32 rootClaim = bytes32(uint256(0x1234));

bytes memory extraData = abi.encodePacked(gameL2BlockNumber);

FaultDisputeGame game = FaultDisputeGame(address(disputeGameFactory.create(

GameType.wrap(0),

Claim.wrap(rootClaim),

extraData

)));

bytes32 disputeClaim = bytes32(uint256(rootClaim)); // MUST be the same

uint256 disputeIndex = 0;

bytes32 disputeNextClaim = bytes32(uint256(0x5678));

bool disputeIsAttack = true;

Position disputePosition = Position.wrap(2); // 2 because we attack 1

uint256 amount = game.getRequiredBond(disputePosition);

vm.warp(1000); // This is 1 second away to exhaust the clock, should give at least Extension

time,!

Duration _nextDuration = game.getChallengerDuration(0);

console.log("Max Clock Duration: %d", 1000);

console.log("Clock Extension: %d", 200);

if(_nextDuration.raw() > 1000 - 200) {

console.log("Not enough time, we need to increase the clock by extension");

}

(, , , , , Position position,

Clock clock

) = game.claimData(0);

Position nextPosition = position.move(disputeIsAttack);

uint256 nextPositionDepth = nextPosition.depth();

console.log("Next Position Depth: %d", nextPositionDepth);

// Since next position depth is 1, the next position will have no time extension.

game.move{value: amount}(

Claim.wrap(disputeClaim),

disputeIndex,

Claim.wrap(disputeNextClaim),

disputeIsAttack

);

(, , , , , ,

Clock clockNew

) = game.claimData(1);

console.log("Clock New duration: %d", clockNew.duration().raw());

13

// The expected duration should be bigger than a normal clock extension

// as the next position is a root claim of a bisection sub-game.

}

}

Recommendation: To address this issue, consider the following solutions:

1. Prevent SPLIT_DEPTH from Being Set to 1 or 0:

• Add a validation check during initialization to ensure that SPLIT_DEPTH is greater than 1.

• This can be implemented by adding a condition to revert the transaction if SPLIT_DEPTH <= 1 on the
constructor.

2. Allow Time Extension When SPLIT_DEPTH is 1 but restrict when 0:

• Add a validation check during initialization to ensure that SPLIT_DEPTH is not zero.

• Modify the logic to ensure that even when SPLIT_DEPTH is 1, the next root claim gets the intended
extension period.

Coinbase: Acknowledged. We'll be fixing this issue on a later date.

5.2.4 Inconsistent _partOffset check and memory boundaries in loadLocalData function

Severity: Low Risk

Context: PreimageOracle.sol#L134

Description: The loadLocalData function in the PreimageOracle contract has a parameter called _partOffset

used to read data from memory after it has been prepared. There are inconsistencies and potential issues with
this implementation:

1. Inconsistent _partOffset Handling:

• The _partOffset parameter is handled inconsistently compared to other parts of the code. For in-
stance, _partOffset == 40 is allowed here but not elsewhere, where the assembly code checks via
iszero(lt(_partOffset, 0x28)). This inconsistency can lead to scenarios where _partOffset val-
ues are valid in one context but not in another.

• The current offset check uses _partOffset > _size + 8. This should be _partOffset >= _size + 8

to correctly prevent out-of-bounds access.

2. Memory Boundaries:

• The function is designed to operate within the scratch space in memory, ranging from 0x00 to 0x40.
The free memory pointer begins at position 0x40. Since the highest possible _partOffset is 0x28, an
mload operation would read 32 bytes from 0x28 to 0x48, including the highest bytes of the free memory
pointer, which are not used. This can lead to potential issues when reading parts of the free memory
pointer.

Recommendation:

1. Correct Offset Check: Update the offset check to ensure it correctly prevents out-of-bounds access:

// Revert if the given part offset is not within bounds.

if (_partOffset >= _size + 8 || _size > 32) {

revert PartOffsetOOB();

}

2. Memory Allocation: Use memory from position 0x80 like in other functions to prevent reading parts of the
free memory pointer. This aligns with the memory usage patterns in other parts of the contract and avoids
potential issues with overlapping memory regions.

Coinbase: Acknowledged. We'll be fixing this issue on a later date.

14

https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/cannon/PreimageOracle.sol#L134

5.2.5 Preimage proposals can be initialized multiple times

Severity: Low Risk

Context: PreimageOracle.sol#L417

Description: initLPP() doesn't check if a proposal already exists, allowing multiple initialisations with the same
_uuid. Since the proposalBonds is assigned to msg.value instead of incremented, this would result in loss of
funds.

Recommendation: Consider checking and reverting for an existing proposal:

if (metaData.claimedSize() != 0) revert ProposalAlreadyExists();

Coinbase: Acknowledged. We'll be fixing this issue on a later date.

5.2.6 _clockExtension and _maxClockDuration are not validated correctly in DisputeGame constructor

Severity: Low Risk

Context: FaultDisputeGame.sol#142

Description: In the constructor of the dispute game, the code validates that the clock extension cannot exceed
the max clock duration:

// The clock extension may not be greater than the max clock duration.

if (_clockExtension.raw() > _maxClockDuration.raw()) revert InvalidClockExtension();

But when the clock extension is granted, If the potential grandchild is an execution trace bisection root, the clock
extension is doubled:

uint64 extensionPeriod =

nextPositionDepth == SPLIT_DEPTH - 1 ? CLOCK_EXTENSION.raw() * 2 : CLOCK_EXTENSION.raw();

nextDuration = Duration.wrap(MAX_CLOCK_DURATION.raw() - extensionPeriod);

If the max duration is set to 7 days, but the clock extension is set to 4 days, when the clock extension is doubled to
8 days, the move transaction will revert, because 7 days - 8 days when extending the clock.

nextDuration = Duration.wrap(MAX_CLOCK_DURATION.raw() - extensionPeriod);

Recommendation: The clock extension may not be greater than the max clock duration:

if (_clockExtension.raw() * 2 > _maxClockDuration.raw()) revert InvalidClockExtension();

Coinbase: Acknowledged. We'll be fixing this issue on a later date.

15

https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/cannon/PreimageOracle.sol#L417
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L142
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L142
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L142
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L377
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L377

5.3 Gas Optimization

5.3.1 Gas optimizations

Severity: Gas Optimization

Context: FaultDisputeGame.sol#L704, FaultDisputeGame.sol#L721, FaultDisputeGame.sol#L75-L76,
PreimageOracle.sol#L93-L97

Description and Recommendation:

There are several gas optimizations that can be made to reduce gas costs:

1. Redundant Depth Check: The (depth > MAX_GAME_DEPTH) check in the getRequiredBond function is un-
necessary since the move function already verifies nextPositionDepth > MAX_GAME_DEPTH before calling
getRequiredBond. This check can be removed unless the function is intended to be used externally.

Recommendation: Remove the redundant check from getRequiredBond to save gas by eliminating unnec-
essary computation when called internally.

// Remove this line from getRequiredBond

- if (depth > MAX_GAME_DEPTH) revert GameDepthExceeded();

2. Precomputed Value: The division uint256 a = highGasCharged / baseGasCharged; can be precom-
puted to 750 to save gas.

Recommendation: Use the precomputed value directly to avoid runtime division, reducing gas costs.

uint256 a = 750;

3. Optimize createdAt Storage: Instead of using a dedicated storage slot for createdAt, create a view function
to derive it from the ClaimData array. This reduces initialization gas costs.

Recommendation: Remove Timestamp public createdAt; and replace it with a view function that derives
the creation timestamp from existing ClaimData.

function createdAt() external view returns (uint64) {

ClaimData memory rootClaimData = claimData[0];

return LibClock.timestamp(rootClaimData.clock);

}

4. Cache zero hash computation: In PreImageOracle, instead of retrieving the zero hashes from the zero-

Hashes mapping which incurs SLOADs, store and retreive the result from memory.

Recommendation: Gas savings of 5755 is observed.

bytes32 hashValue;

for (uint256 height = 0; height < KECCAK_TREE_DEPTH - 1; height++) {

hashValue = keccak256(abi.encodePacked(hashValue, hashValue));

zeroHashes[height + 1] = hashValue;

}

16

https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L704
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L721
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L75-L76
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/cannon/PreimageOracle.sol#L93-L97

5.4 Informational

5.4.1 Add more integration tests with Big Stepper VM execution for DisputeGame#step

Severity: Informational

Context: FaultDisputeGame.sol#238

Description: When a step function is called in dispute game, the user may need to pass in the proof bytes.
However, in the test case, the proof bytes are always empty when calling dispute game step function to resolve a
claim.

The test passes, but the mock test AlphabetVM does not consume the proof data:

/// @title AlphabetVM

/// @dev A mock VM for the purpose of testing the dispute game infrastructure. Note that this only works

/// for games with an execution trace subgame max depth of 3 (8 instructions per subgame).

contract AlphabetVM is IBigStepper {

And the comments explicitly mention the mock VM only works for games with an execution trace subgame max
depth of 3 (8 instructions per subgame).

Recommendation: It is recommended to add more thorough integration testing with VM contract in production
and add tests to cover the case when the proof data is non-empty and when the execution trace subgame max
depth is 126 and contains more instructions.

5.4.2 FaultDisputeGame no existing tests for subgames resolution at the same leftmostPosition

Severity: Informational

Context: FaultDisputeGame.sol#L621

Description: The resolution in the FaultDisputeGame follows the rule of the leftmost child subgame which is
uncountered should win the subgame.

// If the child subgame is uncountered and further left than the current left-most counter,

// update the parent subgame's `countered` address and the current `leftmostCounter`.

// The left-most correct counter is preferred in bond payouts in order to discourage attackers

// from countering invalid subgame roots via an invalid defense position. As such positions

// cannot be correctly countered.

// Note that correctly positioned defense, but invalid claimes can still be successfully countered.

if (claim.counteredBy == address(0) && checkpoint.leftmostPosition.raw() > claim.position.raw()) {

checkpoint.counteredBy = claim.claimant;

checkpoint.leftmostPosition = claim.position;

}

In case multiple child subgames exists at the same position.raw the one with a lower index in challengeIndices

would be iterated first by the loop and would be considered.

uint256[] storage challengeIndices = subgames[_claimIndex];

Therefore, the honest challenger should always continue to play with the leftmost position, if at the same position
the child subgame with a lower challengeIndices.

However, this part doesn't seem to be tested. The condition can be changed to the opposite (The one with the
highest challengeIndices should win if the position is the same, the loop would overwrite the checkpoint for the
same position).

- if (claim.counteredBy == address(0) && checkpoint.leftmostPosition.raw() = claim.position.raw())

+ if (claim.counteredBy == address(0) && checkpoint.leftmostPosition.raw() >= claim.position.raw())

All tests would still pass.

Recommendation: Add tests with subgames at the same leftmost positions.

17

https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L238
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/interfaces/IFaultDisputeGame.sol#L61
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/test/dispute/FaultDisputeGame.t.sol#L814
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/test/mocks/AlphabetVM.sol#L23
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L621

5.4.3 honest defender with limited funds can lose all their ETH if they play with the wrong game strategy

Severity: Informational

Context: FaultDisputeGame.sol#L412

Description: Each move in a FaultDisputeGame requires an additional deposit. It is not true that an honest
defender would always win and receive their funds back, plus the bonds of the opponent player if their budget is
limited.

If the honest defender follows the most intuitive strategy of:

If a challenger opens a new subgame with an incorrect claim, the defender should immediately counter
it as long as they have enough funds.

An attacker could open multiple subgames at the same level but with different incorrect claims until the defender

runs out of funds.

Afterwards, the attacker could move against all the defender subgames. The defender would have no funds to
continue and would lose all their games by timeout.

Recommendation: The correct strategy for the honest defender with limited funds should be:

An incorrect subClaim can only be countered if the defender has enough funds to continue playing all
existing games until the game depth plus the new one.

This strategy would ensure that the honest defender would not lose funds and would win all subgames.

However, the correct rootClaim could still be countered because of the limited budget.

5.4.4 Simpler clean highest byte operation for PreimageOracle and PreimageKeylib

Severity: Informational

Context: PreimageOracle.sol#L187

Description: The PreimageOracle uses the highest byte of a key to indicate the type. Before the the type can be
set it is required to set the highest byte to zero.

This operation happens multiple in the PreimageOracle and in the PreimageKeylib.

This is currently done with a bit mask which first needs to be generated.

and(h, not(shl(248, 0xFF)))

Recommendation: Consider using simpler shift operations instead of a mask.

shr(8, shl(8, h))

Alternatively, a constant for the clean highest byte mask could be added.

5.4.5 FaultDisputeGame.step incorrect comment about number of leaves calculation for each execution
trace subgame

Severity: Informational

Context: FaultDisputeGame.sol#L269

Description: The comment in FaultDisputeGame.sol incorrectly describes the condition for determining
preStateClaim for the leftmost leaf of each execution trace subgame.

18

https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L412
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/cannon/PreimageOracle.sol#L187
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L269

// If the step position's index at depth is 0, the prestate is the absolute

// prestate.

// If the step is an attack at a trace index > 0, the prestate exists elsewhere in

// the game state.

// NOTE: We localize the `indexAtDepth` for the current execution trace subgame by finding

// the remainder of the index at depth divided by 2 ** (MAX_GAME_DEPTH - SPLIT_DEPTH),

// which is the number of leaves in each execution trace subgame. This is so that we can

// determine whether or not the step position is represents the `ABSOLUTE_PRESTATE`.

preStateClaim = (stepPos.indexAtDepth() % (1 << (MAX_GAME_DEPTH - SPLIT_DEPTH))) == 0

? ABSOLUTE_PRESTATE

: _findTraceAncestor(Position.wrap(parentPos.raw() - 1), parent.parentIndex, false).claim;

The correct calculation for the number of leaves in the execution trace trees should be:

(1 << (MAX_GAME_DEPTH - SPLIT_DEPTH - 1))

The execution trace roots are located at SPLIT_DEPTH + 1, making the current calculation (1 << (MAX_GAME_-

DEPTH - SPLIT_DEPTH)) double the actual number of leaf nodes.

However, the stepPos here is already one level below the MAX_GAME_DEPTH at MAX_GAME_DEPTH + 1.

The current implementation works correctly because the stepPos in an attack case is double the parentPos.

// gindex of nextStep in attack scenario

stepPos = parentPos * 2;

Therefore, the left and right side of the modulo operator will be double the amount and compute the correct result
in the modulo equals zero case.

Example: For MAX_GAME_DEPTH = 4 and SPLIT_DEPTH = 2:

• Correct number of leaves: 2 ** (4-2-1) = 2 and not 4.

• Current implementation works correctly because (x % 2) == (2x % 4) holds true if x % 2 == 0.

General Form

x mod y = (2x) mod (2y)

The condition holds true if and only if x mod y = 0.

Recommendation: Use parentPos at MAX_GAME_DEPTH level for a more logical check with the correct amount of
leaves.:

preStateClaim = (parentPos.indexAtDepth() % (2 ** (MAX_GAME_DEPTH - SPLIT_DEPTH - 1))) == 0

Alternatively, adjust the comments for the existing expression.

5.4.6 Discrepancies in handling extraData in dispute game

Severity: Informational

Context: FaultDisputeGame.sol#L192, FaultDisputeGame.sol#L682-L686

Description: The current implementation of creating a dispute game using the factory allows passing
arbitrary-length extraData. However, the dispute game treats this extraData as a single 32-byte value for the
l2BlockNumber. There are several discrepancies and areas for improvement:

1. Offset Descriptions: The factory uses non-hexadecimal numbers for offset descriptions, while the fault game
uses hexadecimal numbers. This inconsistency can lead to confusion.

2. Handling extraData: If more than 32 bytes of extraData is passed, only the first 32 bytes corresponding
to l2BlockNumber are fetched. The code should use return _getArgBytes()[0x54:] to return all the
extraData.

19

https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L192
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L682-L686

3. initialize Function Description: The initialize function specifies 0x20 extraData but does not describe
that the first 32 bytes correspond to l2BlockNumber, which can lead to confusion.

4. Naming Convention: It's recommended to rename extraData to directly refer to l2BlockNumber where ap-
plicable to avoid ambiguity.

Recommendation:

1. Consistent Offset Descriptions: Use hexadecimal numbers consistently for offset descriptions across the
factory and the fault game code.

2. Handling Arbitrary-Length extraData: Update the extraData function to return all the extra data, not just the
first 32 bytes by using _getArgBytes()[0x54:].

3. Clarify initialize Function: Clearly describe that the first 32 bytes of extraData correspond to
l2BlockNumber:

/// @dev The `extraData` parameter is expected to be 32 bytes, where the first 32 bytes

correspond to the `l2BlockNumber`.,!

4. Naming Convention: Rename extraData to directly refer to l2BlockNumber where applicable.

By addressing these issues, the code will be more robust, consistent, and easier to understand, reducing the risk
of errors and improving maintainability.

5.4.7 Optimize check order to revert early for cost-efficient execution

Severity: Informational

Context: DisputeGame.sol#L311, PreimageOracle.sol#L302-L308, PreimageOracle.sol#L544-L547

Description: The referenced lines have checks that can be performed earlier, before external calls and state
updates. This would avoid wasting unnecessary gas from these checks' failures.

• In dispute game step function, if a parent claim is already countered, the user cannot counter the claim again
by changing the msg.sender:

// INVARIANT: A step cannot be made against a claim for a second time.

if (parent.counteredBy != address(0)) revert DuplicateStep();

// Set the parent claim as countered. We do not need to append a new claim to the game;

// instead, we can just set the existing parent as countered.

parent.counteredBy = msg.sender;

The check runs after the VM.step executes. It is recommended to move this check before running the claim
verification and vm execution logic.

• In PreimageOracle loadBlobPreimagePart function, it is recommended to move the _partOffset validation
logic before validating the KZG proof.

• In PreimageOracle addLeavesLPP function, it is recommended to move the number of bytes processed and
claimed size validation logic before extracting the Preimage Part logic.

Recommendation: Shift the checks appropriately to the start of the functions.

20

https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L311
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/cannon/PreimageOracle.sol#L302-L308
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/cannon/PreimageOracle.sol#L544-L547

5.4.8 Theoretical MAX_POSITION_BITLEN is larger

Severity: Informational

Context: File.sol#L123

Description: The MAX_POSITION_BITLEN in the LibPosition library is currently set to 126. However, given that
the maximum index for a given depth is determined by 2depth � 1, and the depth can be increased up to 127, the
MAX_POSITION_BITLEN can theoretically be set to 127. This change would ensure the maximum depth and index
fits within the bounds of a 128-bit value.

2depth + 2depth
� 1 � 2128

� 1

depth + 1 � 128

depth � 127

Recommendation: Update the MAX_POSITION_BITLEN to 127 in the LibPosition library and ensure that all related
tests pass. Although this large value is impractical for most use cases, this change aligns with the theoretical
maximum and ensures the library is robust for all possible scenarios.

5.4.9 Unexpected index notation in libraries

Severity: Informational

Context: LibUDT.sol#L17-L22, LibUDT.sol#L71-L77

Description: The LibClock, GameId and LPPMetadataLib libraries describe the layout of packed data using MSb
(Most Significant bit) notation, which can be confusing given Ethereum's data can span up to 256 bits. The
description should use LSb (Least Significant bit) notation to align with common practices and improve readability.
Specifically, describing the layout as bits 0-64 for the timestamp and bits 64-128 for the duration will help in
understanding and ensuring consistency with the shr and shl operations used in the code.

Change index notation from Msb to Lsb:

N�1X

i=0

bi � 2N�1�i
!

N�1X

i=0

bi � 2i

Recommendation: Change the index notation from MSb to LSb in the comments and documentation. This
will make the descriptions consistent with the operations used in the code and improve readability. Update the
descriptions in LibClock, LibGameId and LPPMetadataLib libraries.

5.4.10 Comment and Variable improvements

Severity: Informational

Context: PreimageOracle#26, PreimageOracle#80, PreimageOracle#745, PreimageOracle#259, PreimageO-
racle#320, PreimageOracle#373, PreimageOracle#383, PreimageOracle.sol#L487, PreimageOracle#550,
FaultDisputeGame#192, FaultDisputeGame#268, FaultDisputeGame.sol#L344, FaultDisputeGame.sol#L373,
FaultDisputeGame.sol#L451, FaultDisputeGame.sol#L510, FaultDisputeGame.sol#L620, FaultDis-
puteGame.sol#L768, FaultDisputeGame#936, FaultDisputeGame.sol#L976, FaultDisputeGame#17,
IFaultDisputeGame.sol#L63, PreimageKeyLib.sol#L16, PreimageOracle.sol#L236

Description: The following are typos, comment improvements for clarity and variable improvements for consis-
tency.

Recommendation:

21

https://github.com/ethereum-optimism/optimism/tree/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/lib/LibUDT.sol#L17-L22
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/lib/LibUDT.sol#L71-L77
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/cannon/PreimageOracle.sol#L26
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/cannon/PreimageOracle.sol#L80
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/cannon/PreimageOracle.sol#L745
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/cannon/PreimageOracle.sol#L259
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/cannon/PreimageOracle.sol#L320
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/cannon/PreimageOracle.sol#L320
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/cannon/PreimageOracle.sol#L373
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/cannon/PreimageOracle.sol#L383
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/cannon/PreimageOracle.sol#L487
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/cannon/PreimageOracle.sol#L550
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L192
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L268
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L344
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L373
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L451
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L510
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L620
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L768
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L768
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L936
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L976
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L17
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/interfaces/IFaultDisputeGame.sol#L63
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/cannon/PreimageKeyLib.sol#L16
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/cannon/PreimageOracle.sol#L236

// 1 less, rightmost node has to be kept empty

- Supports up to 65,536 keccak blocks

+ Supports up to 65,535 keccak blocks

- absorbtion

+ absorption

- preimaage

+ preimage

// 2 instances

- btyes

+ bytes

- returrnData

+ returnData

- ofset

+ offset

- lenth

+ length

- Perist

+ Persist

// to be clear that extraData only stores a word containing l2BlockNumber

// could go a step further to explicitly specify its type (uint64)

- // - 0x20 extraData

+ // - 0x20 extraData: l2BlockNumber

- which is the number of leaves in each execution trace subgame

+ which is twice the number of leaves in each execution trace subgame

- the step position is represents the `ABSOLUTE_PRESTATE`.

+ the step position represents the `ABSOLUTE_PRESTATE`.

- `challengeRootL2Block`.`

+ `challengeRootL2Block`.

- to to respond

+ to respond

- // We add the index at depth + 1 to the starting block number

+ // We add 1 + the trace index at depth of SPLIT_DEPTH to the starting block number

- // Decode the header RLP to find the number of the block. In the consensus encoding, the timestamp

+ // Decode the header RLP to find the number of the block. In the consensus encoding, the block number

// is the 9th element in the list that represents the block header.

- claimes

+ claims

// no longer about remaining time, but duration elapsed

- // INVARIANT: The game must be in progress to query the remaining time to respond to a given claim.

+ // INVARIANT: The game must be in progress to query the potential challenger's elapsed time

- Fatch

+ Fetch

// missing "neither",

22

- the starting claim nor position exists in the tree

+ neither the starting claim nor position exists in the tree

// appears twice, remove 1 instance

- import { Types } from "src/libraries/Types.sol";

- PreimageOralce

+ PreimageOracle

// swap order to be consistent with `PreImageOracle` + 0 prefix to prefix type byte

- key_ := or(shl(248, 1), and(_ident, not(shl(248, 0xFF))))

+ key_ := or(and(_ident, not(shl(248, 0xFF))), shl(248, 0x01))

// 0 prefix to prefix type byte

- shl(248, 4)

+ shl(248, 0x04)

5.4.11 Duplicate and Zero-Value Checks

Severity: Informational

Context: AnchorStateRegistry.sol#L46-L51, PreimageOracle.sol#L90

Description: The initialize function in the AnchorStateRegistry contract does not currently check whether an
anchor for a given gameType is already set or if the outputRoot is zero. This oversight can lead to duplicate entries
and potentially invalid states, which could disrupt the functionality of the contract.

Similarly, the constructor in PreImageOracle doesn't check if the _minProposalSize is zero. It is important for it
to be non-zero as it is a condition for checking initialisation in addLeavesLPP .

Recommendation: Enhance the initialize function to include checks for existing anchors and non-zero out-

putRoot values. This will prevent duplicates and ensure that only valid anchor states are initialized.

Also, include a check for zero _minProposalSize.

5.4.12 Immutable address validation on AnchorStateRegistry

Severity: Informational

Context: AnchorStateRegistry.sol#L38

Description: The DISPUTE_GAME_FACTORY address in the AnchorStateRegistry contract is marked as immutable
and is set during the contract deployment. However, there is no validation to ensure that the address provided is
correct and points to a valid IDisputeGameFactory contract. If an incorrect address is provided, the contract would
have to be redeployed, which is costly and inefficient. This could be prevented by validating the address during the
contract construction.

Recommendation: To ensure the correctness of the DISPUTE_GAME_FACTORY address, add a validation step in the
constructor. This can be achieved by calling a view function (e.g., version) on the provided address to ensure it is
a valid IDisputeGameFactory contract.

23

https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/AnchorStateRegistry.sol#L46-L51
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/cannon/PreimageOracle.sol#L90
https://github.com/ethereum-optimism/optimism/blob/1f7081798ce2d49b8643514663d10681cb853a3d/packages/contracts-bedrock/src/dispute/AnchorStateRegistry.sol#L38

	About Spearbit
	Introduction
	Risk classification
	Impact
	Likelihood
	Action required for severity levels

	Executive Summary
	Findings
	Medium Risk
	PreimageOracle.loadPrecompilePreimagePart an outOfGas error in the precompile will overwrite correct preimageParts
	Invalid Ancestor Lookup Leading to Out-of-Bounds Array Access
	An attacker with more available funds can counter an honest rootClaim defender
	challengeRootL2Block can be abused to block honest gamer from receiving the bond.

	Low Risk
	FaultDisputeGame.step function can be called after parentClaim is resolved
	challengeRootL2Block called between resolveClaim and resolve would result in incorrect GameStatus and state
	Extension period not applied correctly for next root when SPLIT_DEPTH is set to 1 or less
	Inconsistent _partOffset check and memory boundaries in loadLocalData function
	Preimage proposals can be initialized multiple times
	_clockExtension and _maxClockDuration are not validated correctly in DisputeGame constructor

	Gas Optimization
	Gas optimizations

	Informational
	Add more integration tests with Big Stepper VM execution for DisputeGame#step
	FaultDisputeGame no existing tests for subgames resolution at the same leftmostPosition
	honest defender with limited funds can lose all their ETH if they play with the wrong game strategy
	Simpler clean highest byte operation for PreimageOracle and PreimageKeylib
	FaultDisputeGame.step incorrect comment about number of leaves calculation for each execution trace subgame
	Discrepancies in handling extraData in dispute game
	Optimize check order to revert early for cost-efficient execution
	Theoretical MAX_POSITION_BITLEN is larger
	Unexpected index notation in libraries
	Comment and Variable improvements
	Duplicate and Zero-Value Checks
	Immutable address validation on AnchorStateRegistry

