
Base fault proofs mips
Security Review

Cantina Managed review by:
Christian Reitwiessner, Lead Security Researcher
Leo Alt, Lead Security Researcher
Lucas Clemente Vella, Security Researcher

August 14, 2024

Contents
1 Introduction 21.1 About Cantina . 21.2 Disclaimer . 21.3 Risk assessment . 21.3.1 Severity Classification . 2
2 Security Review Summary 3

3 Findings 43.1 Critical Risk . 43.1.1 Allocation overflow could allow for arbitrary code execution 43.2 High Risk . 43.2.1 Lack of GC/deallocation is at odds with EVM gas security model 43.3 Medium Risk . 53.3.1 Unknown/unimplemented system calls silently succeeds 53.3.2 Unaligned memory reads are aligned silently but should panic 53.3.3 Integer Overflow not implemented for add, addi and sub 53.3.4 add, addi, submust panic if overflow . 53.3.5 Wrong implementation of srav . 53.3.6 Non-zero rd register may be wrongly set to 0 . 63.3.7 J/JAL uses the wrong PC value as the high bits for the jump 63.3.8 Branch instructions bgezal and bltzal not implemented 63.4 Low Risk . 63.4.1 Validation of binary encoding of instructions is too lax 63.4.2 Location of registers array in memory should be verified 63.4.3 state.exited should be checked to be either 0 or 1 . 73.5 Gas Optimization . 73.5.1 Possible improvement in pointer alignment operation 73.6 Informational . 73.6.1 Wrong comment . 73.6.2 mmap does not require MAP_ANONYMOUS for allocations . 73.6.3 Misleading constant name . 73.6.4 Oudated version in comment . 83.6.5 The signExtend function could use the SIGNEXTEND opcode 83.6.6 Use arithmetic right shift instead of manually implementing it through logical rightshift . 83.6.7 Make use of compiler-provided sign extension routines 83.6.8 Magic number 420 should be replaced by a constant . 83.6.9 Unify revert data . 83.6.10 requiremessage typo: should read invalid instead of valid 93.6.11 Use helper function to return the state object . 93.6.12 Memory copy routine in outputState could maybe use abi.encodePacked 93.6.13 Use constants instead of magic numbers for syscall ids 93.6.14 sync instruction can act as a "move" . 93.6.15 jalr unchecked undefined behavior . 93.6.16 sc undefined behaviors not checked . 103.6.17 clz and clo have unchecked undefined behaviors . 103.6.18 Branch in delay slot check can be bypassed . 103.6.19 Jump in delay slot check can be bypassed . 10

1

1 Introduction

1.1 About Cantina
Cantina is a security servicesmarketplace that connects top security researchers and solutionswith clients.Learn more at cantina.xyz
1.2 Disclaimer
CantinaManagedprovides a detailed evaluation of the security posture of the code at a particularmomentbased on the information available at the time of the review. While CantinaManaged endeavors to identifyand disclose all potential security issues, it cannot guarantee that every vulnerability will be detected orthat the code will be entirely secure against all possible attacks. The assessment is conducted based onthe specific commit and version of the code provided. Any subsequent modifications to the code mayintroduce new vulnerabilities that were absent during the initial review. Therefore, any changes madeto the code require a new security review to ensure that the code remains secure. Please be advisedthat the Cantina Managed security review is not a replacement for continuous security measures such aspenetration testing, vulnerability scanning, and regular code reviews.
1.3 Risk assessment

Severity Description

Critical Must fix as soon as possible (if already deployed).

High Leads to a loss of a significant portion (>10%) of assets in the protocol, or sig-nificant harm to a majority of users.

Medium Global losses <10% or losses to only a subset of users, but still unacceptable.

Low Losses will be annoying but bearable. Applies to things like griefing attacks thatcan be easily repaired or even gas inefficiencies.

Gas Optimization Suggestions around gas saving practices.

Informational Suggestions around best practices or readability.
1.3.1 Severity Classification

The severity of security issues found during the security review is categorized based on the above table.Critical findings have a high likelihood of being exploited and must be addressed immediately. High find-ings are almost certain to occur, easy to perform, or not easy but highly incentivized thus must be fixedas soon as possible.
Medium findings are conditionally possible or incentivized but are still relatively likely to occur and shouldbe addressed. Low findings a rare combination of circumstances to exploit, or offer little to no incentiveto exploit but are recommended to be addressed.
Lastly, some findings might represent objective improvements that should be addressed but do not im-pact the project’s overall security (Gas and Informational findings).

2

https://cantina.xyz

2 Security Review Summary

Base is a secure and low-cost Ethereum layer-2 solution built to scale the userbase on-chain.
From Jun 3rd to Jun 21st the Cantina team conducted a review of fault-proofs-mips on commit hash71b93116. The team identified a total of 23 issues in the following risk categories:

• Critical Risk: 1
• High Risk: 1
• Medium Risk: 8
• Low Risk: 3
• Gas Optimizations: 1
• Informational: 19

3

https://github.com/ethereum-optimism/optimism
https://github.com/ethereum-optimism/optimism/tree/71b93116738ee98c9f8713b1a5dfe626ce06c1b2/

3 Findings

3.1 Critical Risk
3.1.1 Allocation overflow could allow for arbitrary code execution

Severity: Critical Risk
Context: MIPS.sol#L169
Description: mmap does not check for out of memory condition, and simply advance the pointer, evenallowing it to wrap around to zero. This makes the entire memory susceptible to be returned from mmap(),including the data and text sections of the MIPS programs being executed.
The memory layout of the MIPS program being executed is public knowledge. If an attacker manages toexploit this program to allocate somuchmemory that the allocation pointer is just behind the beginning ofthe text section (maybe bymaking use of finding "Lack of GC/deallocation is at odds with EVM gas securitymodel"), the next mmap() call can be crafted to be an EVM memory allocation, which will override part ofthe MIPS binary being executed with the contract's data memory, that was controlled by the attacker andfilled with whatever MIPS code they want.
Recommendation: There must be a limit in the amount of memory the program can allocate, and theallocatable region region of the address space must not coincide with any program section (data or text)in the MIPS executable.
Coinbase: Acknowledged. We'll be fixing this issue on a later date.
3.2 High Risk
3.2.1 Lack of GC/deallocation is at odds with EVM gas security model

Severity: High Risk
Context: MIPS.sol#L142
Description/Recommendation: In EVM, the gas cost tries to emulate the real resources consumption ofexecuting a contract in a real machine, and its entire security model depends on this assumption.
The gas cost of memory for an EVM program is quadratic, but is based on the assumption that when acontract ends, its memory will be freed. This virtual machine does not provides munmap nor have threadsto allow for the GC to run, breaking this assumption when a subcontract returns from a CALL.
Running some back-of-the-envelope calculations, it would cost ~20,000,000 gas for a contract to allocate~ 6 MB of usable contract memory (by CALLing ~13,000 times, in a loop, a contract that allocates 15 words,I got this number trying to maximize memory per gas cost). Having a contract holding this much memoryallocated simultaneously in real EVM would cost > 115,000,000,000 gas.
The underlining consequence for the emulated MIPS machine are hard to predict, but just by assumingthat for every CALL the EVM allocates a single 4 KB page, a contract expending all its 20,000,000 gas limitin CALLs can make the EVM allocate upwards of 100 MB.

4

https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/MIPS.sol#L169
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/MIPS.sol#L142

3.3 Medium Risk
3.3.1 Unknown/unimplemented system calls silently succeeds

Severity: Medium Risk
Context: MIPS.sol#L290
Description/Recommendation: Should probably revert on unknown/unimplemented system calls, butat the bare minimum, should not return 0 (success) on $a3.
3.3.2 Unaligned memory reads are aligned silently but should panic

Severity: Medium Risk
Context: MIPS.sol#L743, MIPSInstructions.sol#L187, MIPSInstructions.sol#L197, MIPSInstruc-tions.sol#L205, MIPSInstructions.sol#L221, MIPSInstructions.sol#L233, MIPSInstructions.sol#L243,MIPSInstructions.sol#L247
Description/Recommendation: This silently aligns the address (which is consistent with the go imple-mentation). The spec demands an exception for any unaligned memory access though.
This means that improperly aligned memory reads result in wrong data being returned by the read oper-ation and is also inconsistent with the MIPS spec.
Coinbase: Acknowledged.
3.3.3 Integer Overflow not implemented for add, addi and sub

Severity: Medium Risk
Context: MIPSInstructions.sol#L117, MIPSInstructions.sol#L125
Description/Recommendation: add, addi and sub must raise exception on signed overflow. Probablybest to implement with Solidity "checked" arithmetic over type int32.
Coinbase: Acknowledged.
3.3.4 add, addi, submust panic if overflow

Severity: Medium Risk
Context: mips_instructions.go#L72
Description/Recommendation: Same as the Solidity counterpart: add, addi and sub must raise excep-tion on signed overflow.
Coinbase: Acknowledged.
3.3.5 Wrong implementation of srav

Severity: Medium Risk
Context: MIPSInstructions.sol#L53
Description/Recommendation: Must mask the 5 lower bits of rs (i.e. rs & 0x1F), just like the previoustwo instructions sllv and srlv. Failing to do so is not MIPS conformant. Quoting the manual on srav:

The bit-shift amount is specified by the low-order 5 bits of GPR rs.
For example, in a conforming MIPS implementation, if rt contains 0x0000FFFF and rs contains 0x28, theresult would be 0x000000FF, as only the five lower bits of 0x28would be used. In this implementation, theresult is 0.
Coinbase: Acknowledged. We'll be fixing this issue on a later date.

5

https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/MIPS.sol#L290
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/MIPS.sol#L743
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/libraries/MIPSInstructions.sol#L187
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/libraries/MIPSInstructions.sol#L197
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/libraries/MIPSInstructions.sol#L205
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/libraries/MIPSInstructions.sol#L205
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/libraries/MIPSInstructions.sol#L221
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/libraries/MIPSInstructions.sol#L233
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/libraries/MIPSInstructions.sol#L243
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/libraries/MIPSInstructions.sol#L247
https://www.cs.cmu.edu/afs/cs/academic/class/15740-f97/public/doc/mips-isa.pdf
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/libraries/MIPSInstructions.sol#L117
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/libraries/MIPSInstructions.sol#L125
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/cannon/mipsevm/mips_instructions.go#L72
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/libraries/MIPSInstructions.sol#L53

3.3.6 Non-zero rd register may be wrongly set to 0

Severity: Medium Risk
Context: MIPS.sol#L435
Description/Recommendation: Similar to other issues, this assumes an honest and bug-free compiler.If a non-zero rd register is passed here with MTHI or MTLO, that register would be overwritten with 0. Thiscould be due a malicious or buggy compiler.
Coinbase: Acknowledged.
3.3.7 J/JAL uses the wrong PC value as the high bits for the jump

Severity: Medium Risk
Context: MIPS.sol#L696-L697
Description/Recommendation: This seems wrong according to MIPS ISA specification linked at the topof the file. This jump should be within the 256MB region of the instruction being executed (state.pc), notthe next instruction (state.nextPC). Notice that this is different from the branch instructions, which usesas reference the PC of the following delay slot.
3.3.8 Branch instructions bgezal and bltzal not implemented

Severity: Medium Risk
Context: MIPS.sol#L346
Description/Recommendation: Only two sub-instructions of the "opcode 1" are implemented: bltz and
bgez. Other instructions like bgezal (rtv == 17) are not implemented and behave like a non-branchingbranch. The instructions should either be implemented or the code should revert if rtv is larger than 1.
3.4 Low Risk
3.4.1 Validation of binary encoding of instructions is too lax

Severity: Low Risk
Context: MIPS.sol#L329-L336, MIPS.sol#L384-L431, MIPS.sol#L759-L760, MIPSInstructions.sol#L115-L122, MIPSInstructions.sol#L131-L142, MIPSInstructions.sol#L147-L153, MIPSInstructions.sol#L158-L181,MIPSInstructions.sol#L30-L42, MIPSInstructions.sol#L78-L81
Description/Recommendation: Many instructions have regions of its binary encoding that are man-dated to be zero, but these are not being checked or enforced. For most, having non-zero values is in-nocuous, but some do generate side effects (e.g. see findings "Non-zero rd register may be wrongly setto 0" and sync instruction can act as a "move").
Notice that add, addu, and, or, xor, slt and sltu do have zeroed ranges, but the code that handles theircases also handles addi, addiu, andi, ori, xori, slti and sltiu, which do not have zeroed ranges.
Coinbase: Acknowledged.
3.4.2 Location of registers array in memory should be verified

Severity: Low Risk
Context: MIPS.sol#L678
Description: Some assumptions about the compiler with regards to memory and calldata layout arechecked using assertions in this code. One fact that is not verified in the same way is that the registersarray is allocated in memory right after the state struct. In MIPS.sol#L678 the pointer to this array iswritten to memory, but the compiler should already have allocated the array at exactly that point.
Recommendation: It would be good defensive practice to check that the value is already stored in mem-ory at exactly that point instead of overwriting it. If the allocation algorithm somehow changes, this mighthave unforeseen consequences.

6

https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/MIPS.sol#L435
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/MIPS.sol#L696-L697
https://www.cs.cmu.edu/afs/cs/academic/class/15740-f97/public/doc/mips-isa.pdf
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/MIPS.sol#L346
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/MIPS.sol#L329-L336
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/MIPS.sol#L384-L431
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/MIPS.sol#L759-L760
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/libraries/MIPSInstructions.sol#L115-L122
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/libraries/MIPSInstructions.sol#L115-L122
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/libraries/MIPSInstructions.sol#L131-L142
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/libraries/MIPSInstructions.sol#L147-L153
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/libraries/MIPSInstructions.sol#L158-L181
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/libraries/MIPSInstructions.sol#L30-L42
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/libraries/MIPSInstructions.sol#L78-L81
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/MIPS.sol#L678
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/MIPS.sol#L678

Coinbase: Acknowledged. We'll be fixing this issue on a later date.
3.4.3 state.exited should be checked to be either 0 or 1

Severity: Low Risk
Context: MIPS.sol#L131, MIPS.sol#L684
The field exited of the state struct is a boolean, but in Solidity, booleans occupy a full byte, which meansthey can have more than just the values 0 or 1. In some parts of the code, this byte is "converted" to aboolean by checking != 0, in other parts, the check is == 1, which yield different results for e.g. the value2. The code should revert if the value is larger than 1.
Coinbase: Acknowledged. We'll be fixing this issue on a later date.
3.5 Gas Optimization
3.5.1 Possible improvement in pointer alignment operation

Severity: Gas Optimization
Context: MIPS.sol#L162-L166
Description: The highlighted code could be rewritten without branching, with just two arithmetic opera-tions (with the fair assumption that ~4095 will be optimized into a constant):
uint32 sz = (a1 + 4095) & ~4095;

3.6 Informational
3.6.1 Wrong comment

Severity: Informational
Context: MIPS.sol#L253
Description: Comment says this is a read, but this is a write.
Recommendation: Update the comment to reflect the actual operation.
3.6.2 mmap does not require MAP_ANONYMOUS for allocations

Severity: Informational
Context: MIPS.sol#L161
Description/Recommendation: To make the mmap a little more compatible with Linux, it should validateargument flags ($a3) for the presence of the flag MAP_ANONYMOUS. Otherwise, this is not an allocation andthe call should fail.
3.6.3 Misleading constant name

Severity: Informational
Context: MIPS.sol#L56
Description: The current name FD_PREIMAGE_WRITEmakes it look like this is the counterpart of FD_PREIM-
AGE_READ, but in it is not, in the actual implementation, the former is used as a selector for the later.
Recommendation: Amore appropriate name could be FD_PREIMAGE_KEY_WRITE, because it makes it clearthat it is writing the key of the preimage, not the preimage itself.

7

https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/MIPS.sol#L131
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/MIPS.sol#L684
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/MIPS.sol#L162-L166
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/MIPS.sol#L253
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/MIPS.sol#L161
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/MIPS.sol#L56

3.6.4 Oudated version in comment

Severity: Informational
Context: MIPS.sol#L47-L48
Recommendation: The version in the comment is different from the version in the constant.
3.6.5 The signExtend function could use the SIGNEXTEND opcode

Severity: Informational
Context: MIPSInstructions.sol#L258
Description/Recommendation: The signExtend function is a manual implementation of sign extensioneven though the EVM has an opcode for sign extension that can be used directly.
3.6.6 Use arithmetic right shift instead of manually implementing it through logical right shift

Severity: Informational
Context: MIPSInstructions.sol#L41
Description/Recommendation: The EVM (and Solidity) support an arithmetic right shift operation, soinstead of using logical right shift and sign extend, this functionality should be used.
3.6.7 Make use of compiler-provided sign extension routines

Severity: Informational
Context: MIPS.sol#L722
Description/Recommendation:MIPS.sol#L722 is equivalent to rt = uint32(int32(int16(uint16(insn))))where the compiler provides the sign extension routine (it actually makes use of the signextend opcode)and also checks that the type conversions are not illegal.
3.6.8 Magic number 420 should be replaced by a constant

Severity: Informational
Context: MIPS.sol#L649
Description/Recommendation: The magic number 420 is the assumed location of the proof in the call-data. It is repeated in the proofOffset function. Instead, both locations should use a constant.
3.6.9 Unify revert data

Severity: Informational
Context: MIPS.sol#L566
Description: Throughout the code, some revert messages are strings while some others are just hexvalues. The revert message style should be unified.
Recommendation: While the current line is assembly code, it is not too difficult to actually encode aproper string revert message.

8

https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/MIPS.sol#L47-L48
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/libraries/MIPSInstructions.sol#L258
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/libraries/MIPSInstructions.sol#L41
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/MIPS.sol#L722
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/MIPS.sol#L722
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/MIPS.sol#L649
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/MIPS.sol#L566

3.6.10 requiremessage typo: should read invalid instead of valid

Severity: Informational
Context: MIPS.sol#L492
Description/Recommendation: Require messages should specify the error reason instead of the de-sired behaviour. Because of that, the string should read "invalid register" instead of "valid register".
3.6.11 Use helper function to return the state object

Severity: Informational
Context: MIPS.sol#L488
Description/Recommendation: The state object is kept at a fixed memory location to avoid passing itas an argument to functions. The problem is that at the beginning of these functions, the object (i.e. thepointer to it) is created with a snippet of assembly that contains the "magic" pointer value 0x80. It wouldbe better to move this code to a helper function that returns "State memory" to reduce the number ofplaces in the code that has this magic value.
3.6.12 Memory copy routine in outputState could maybe use abi.encodePacked

Severity: Informational
Context: MIPS.sol#L94
Description/Recommendation: The routine in outputState that copies the memory object into a flatbyte array could use abi.encodePacked. The downside is an allocation, but it would save a lot of codelines and there is no danger of missing a struct field or counting their sizes wrongly.
3.6.13 Use constants instead of magic numbers for syscall ids

Severity: Informational
Context: MIPS.sol#L183
Description/Recommendation: Use constants instead of magic numbers for syscall ids.
3.6.14 sync instruction can act as a "move"

Severity: Informational
Context: MIPSInstructions.sol#L78-L81
Description/Recommendation: sync instruction is not handled elsewhere. This means that the binaryvalues insn[25..21] and insn[15..11] are interpreted, respectively, as rs and rd, and this instruction actas a move from rs to rd. If the sync instruction is well formed, it will be a move from $zero to $zero, soeffectively a nop. But it could be anything, because the binary range insn[25..6] is unchecked. I suggestasserting at least insn[25..11] to 0, to avoid creating an accidental "move" instruction.
3.6.15 jalr unchecked undefined behavior

Severity: Informational
Context: MIPS.sol#L761
Description/Recommendation: In case of jalr (func == 9), it is undefined for rs and rd to refer to thesame register. This is another source of undefined behavior the code could check for.

9

https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/MIPS.sol#L492
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/MIPS.sol#L488
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/MIPS.sol#L94
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/MIPS.sol#L183
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/libraries/MIPSInstructions.sol#L78-L81
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/MIPS.sol#L761

3.6.16 sc undefined behaviors not checked

Severity: Informational
Context: MIPSInstructions.sol#L246-L248
Description/Recommendation: There are a couple sources of undefined behavior in sc that were notchecked. Quote from the "The MIPS32™ Instruction Set":

• Execution of SC must have been preceded by execution of an LL instruction.
• A RMW sequence executed without intervening exceptions must use the same address inthe LL and SC. [...]

3.6.17 clz and clo have unchecked undefined behaviors

Severity: Informational
Context: MIPSInstructions.sol#L166-L176
Description/Recommendation: It is undefined behavior if rs and rt do not refer to the same register inthe encoding of clz and clo instructions. The behavior is unspecified, akin to branch/jump in delay slot,which the code tries to detect and revert. So it would be consistent to also try to detect and revert on thisone.
Notice that it doesn't suffice to assert that rs == rt, because the equal values might still have come fromdifferent registers.
3.6.18 Branch in delay slot check can be bypassed

Severity: Informational
Context: MIPS.sol#L320
Description/Recommendation: The same issue as finding #1: this check does not rule out the previousinstruction was not a jump or branch with target state.pc + 4.
3.6.19 Jump in delay slot check can be bypassed

Severity: Informational
Context: MIPS.sol#L459
Description/Recommendation: This doesn't catch every jump in the delay slot. The previous instructioncould have been a jump to state.pc + 8. According to Cantina VM Specs, "While this is considered "unde-fined" behavior in typical MIPS implementations, FPVM must raise an exception when stepping on suchstates." from @lvella

10

https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/libraries/MIPSInstructions.sol#L246-L248
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/libraries/MIPSInstructions.sol#L166-L176
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/MIPS.sol#L320
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/findings/1
https://cantina.xyz/code/8f9805fc-589b-4c6e-a489-b3210866e540/packages/contracts-bedrock/src/cannon/MIPS.sol#L459
https://github.com/ethereum-optimism/specs/blob/main/specs/fault-proof/cannon-fault-proof-vm.md#delay-slots

	Introduction
	About Cantina
	Disclaimer
	Risk assessment
	Severity Classification

	Security Review Summary
	Findings
	Critical Risk
	Allocation overflow could allow for arbitrary code execution

	High Risk
	Lack of GC/deallocation is at odds with EVM gas security model

	Medium Risk
	Unknown/unimplemented system calls silently succeeds
	Unaligned memory reads are aligned silently but should panic
	Integer Overflow not implemented for add, addi and sub
	add, addi, sub must panic if overflow
	Wrong implementation of srav
	Non-zero rd register may be wrongly set to 0
	J/JAL uses the wrong PC value as the high bits for the jump
	Branch instructions bgezal and bltzal not implemented

	Low Risk
	Validation of binary encoding of instructions is too lax
	Location of registers array in memory should be verified
	state.exited should be checked to be either 0 or 1

	Gas Optimization
	Possible improvement in pointer alignment operation

	Informational
	Wrong comment
	mmap does not require MAP_ANONYMOUS for allocations
	Misleading constant name
	Oudated version in comment
	The signExtend function could use the SIGNEXTEND opcode
	Use arithmetic right shift instead of manually implementing it through logical right shift
	Make use of compiler-provided sign extension routines
	Magic number 420 should be replaced by a constant
	Unify revert data
	require message typo: should read invalid instead of valid
	Use helper function to return the state object
	Memory copy routine in outputState could maybe use abi.encodePacked
	Use constants instead of magic numbers for syscall ids
	sync instruction can act as a "move"
	jalr unchecked undefined behavior
	sc undefined behaviors not checked
	clz and clo have unchecked undefined behaviors
	Branch in delay slot check can be bypassed
	Jump in delay slot check can be bypassed

