

Optimism Bedrock upgrade
11/01/2024

Trust
Security

Smart Contract Audit

Trust Security Optimism Bedrock upgrade

Executive summary

Findings

Severity Total Fixed Acknowledged

High 1 1 -

Medium 3 - 3

Low 8 1 7

Centralization score

Centralized Decentralized

Signature

Category Rollups

Audited file count 8

Auditor Trust
Gjaldon

Time period 11/12-25/12

1, High

3,
Medium

8, Low

FINDINGS

Trust Security Optimism Bedrock upgrade

EXECUTIVE SUMMARY 1

DOCUMENT PROPERTIES 3

Versioning 3

Contact 3

INTRODUCTION 4

Scope 4

Repository details 4

About Trust Security 4

About the Auditors 5

Disclaimer 5

Methodology 5

QUALITATIVE ANALYSIS 6

FINDINGS 7

High severity findings 7

 TRST-H-1 Anyone can execute a withdrawal twice by abusing the upgrade procedure 7

Medium severity findings 8

TRST-M-1 Anyone can make a victim’s withdrawal TX revert, delaying withdrawals and making

them more expensive 8

TRST-M-2 Insufficient calldata gas stipend could make initial delivery fail 9

TRST-M-3 Messages of over 50k bytes can be permanently lost due to unaccounted gas costs 10

Low severity findings 13

TRST-L-1 User is forced to overpay for deposit gas due to calldata gas calculation 13

TRST-L-2 The metering logic in OptimismPortal will be incorrect immediately after the upgrade 14

TRST-L-3 A storage slot is accidentally skipped 15

TRST-L-4 Upgrades are resetting the state of unused storage slots 16

TRST-L-5 The gas buffer set is insufficient, leading to risks of unexpected reverts 17

TRST-L-6 OptimismPortal consumes all forwarded gas even if the TX is undeliverable 18

TRST-L-7 Users can underpay gas for contract creations, which would make them fail 20

TRST-L-8 Different ERC20Factory addresses between chains makes it impossible to deploy ERC20s

with the same address on all the chains 21

Additional recommendations 21

Including constructor arguments in the salt is redundant 21

Centralization risks 22

 TRST-CR-1 The SuperchainConfig guardian can pause all Superchains 22

Trust Security Optimism Bedrock upgrade

Document properties

Versioning

Version Date Description

0.1 25/12/23 Client report

0.2 11/01/23 Mitigation review

Contact

Trust

trust@trust-security.xyz

Trust Security Optimism Bedrock upgrade

Introduction

Trust Security has conducted an audit at the customer's request. The audit is focused on

uncovering security issues and additional bugs contained in the code defined in scope. Some

additional recommendations have also been given when appropriate.

Scope

The scope is all changes made in the contracts below, since the Sherlock contest commit.

• SuperchainConfig.sol

• L1CrossDomainMessenger.sol

• L1ERC721Bridge.sol

• L1StandardBridge.sol

• OptimismPortal.sol

• CrossDomainMessenger.sol

• ERC721Bridge.sol

• StandardBridge.sol

Specifically, the following mechanisms have been given special attention:

- Mitigation of contest’s reported gas issues and additional gas-related flaws

- Examination of storage slots and the impact of upgrades on their safety

- Changes in reentrancy protection of cross-chain messaging

- Integration of the new SuperchainConfig contract, including the pausing functionality.

- Upgrade procedure of Bedrock contracts and potential side-effects

Repository details

• Repository URL: https://github.com/ethereum-optimism/optimism

• Commit hash: d1651bb22645ebd41ac4bb2ab4786f9a56fc1003

• Mitigation review commit hash: 81b56fee40f96c798174115c375f41c3d2ff9d40

About Trust Security

Trust Security has been established by top-end blockchain security researcher Trust, in order

to provide high quality auditing services. Trust is a leading auditor at competitive auditing

service Code4rena, reported several critical issues to Immunefi bug bounty platform and is

serving as a Code4rena judge.

https://github.com/ethereum-optimism/optimism/commit/9b9f78c6613c6ee53b93ca43c71bb74479f4b975
https://github.com/ethereum-optimism/optimism

Trust Security Optimism Bedrock upgrade

About the Auditors

Trust has established a dominating presence in the smart contract security ecosystem since

2022. He is a resident on the Immunefi, Sherlock and C4 leaderboards and is now focused in

auditing and managing audit teams under Trust Security. When taking time off auditing & bug

hunting, he enjoys assessing bounty contests in C4 as a Supreme Court judge.

Gjaldon transitioned to Web3 after 10+ years working as a Web2 engineer. His first foray into

Web3 was achieving first place in a smart contracts hackathon and then later securing a

project grant to write a contract for Compound III. He shifted to Web3 security and in 3

months achieved top 2-5 in two contests with unique High and Medium findings and joined

exclusive top-tier auditing firms.

Disclaimer

Smart contracts are an experimental technology with many known and unknown risks. Trust

Security assumes no responsibility for any misbehavior, bugs or exploits affecting the audited

code or any part of the deployment phase.

Furthermore, it is known to all parties that changes to the audited code, including fixes of

issues highlighted in this report, may introduce new issues and require further auditing.

Methodology

In general, the primary methodology used is manual auditing. The entire in-scope code has

been deeply looked at and considered from different adversarial perspectives. Any additional

dependencies on external code have also been reviewed.

Trust Security Optimism Bedrock upgrade

Qualitative analysis

Metric Rating Comments
Code complexity

Good

The code is modularized
well to reduce complexity.

Documentation

Excellent

Project is mostly very well

documented.

Best practices

Excellent

Project consistently
adheres to industry
standards.

Centralization risks

Moderate A compromised multisig
account can cause
irrecoverable damage.

Trust Security Optimism Bedrock upgrade

Findings

High severity findings

 TRST-H-1 Anyone can execute a withdrawal twice by abusing the upgrade procedure

• Category: Reentrancy attacks, frontrunning attacks, initialization flaws

• Source: CrossDomainMessenger.sol

• Status: Fixed

Description

In Optimism architecture, every withdrawal can be performed once. The recommended way

is to use the CrossDomainMessenger which protects against any delivery issues by storing

failed messages, so they may be replayed. In CrossDomainMessenger::relayMessage(), the

following code serves as a reentrancy guard:

It checks that xDomainMsgSender is not the default L2 sender. If it is not, then it will proceed

to fail the message. Note that because successfulMessages[versionedHash] is checked before

the external call and set to true after it, the code pattern is otherwise susceptible to

reentrancy attacks.

The CrossDomainMessenger also has some initialization code that is run every time it is

upgraded. This initializer resets the xDomainMsgSender and is what opens the exploit

enabling an attacker to steal funds via reentrancy.

To perform the exploit, the following steps must be taken by the attacker:

1. Wait for a signed upgrade transaction from Optimism. This was intended to be
delivered by the public mempool.

2. Once the signed upgrade transaction is available, front-run by running it inside a
withdrawal transaction.

3. The attacker's withdrawal payload will call their own contract which would run the
upgrade transaction and then re-enter relayMessage() with their own same
withdrawal message.

4. The reentrancy will succeed since xDomainMsgSender has been reset by the upgrade.

The attacker must also satisfy the following with their withdrawal message:

1. It must be a failed withdrawal so they can re-enter relayMessage(). A fresh withdrawal
cannot reenter as it checks failedMessages[versionedHash] is true.

2. It must have a value set. The amount for value is the amount that they will able to
drain from the contract.

https://github.com/ethereum-optimism/optimism/
https://github.com/ethereum-optimism/optimism/blob/d1651bb22645ebd41ac4bb2ab4786f9a56fc1003/packages/contracts-bedrock/src/universal/CrossDomainMessenger.sol#L267-L270
https://github.com/ethereum-optimism/optimism/blob/d1651bb22645ebd41ac4bb2ab4786f9a56fc1003/packages/contracts-bedrock/src/universal/CrossDomainMessenger.sol#L356-L358

Trust Security Optimism Bedrock upgrade

The funds at risk for this exploit is the ETH balance of the L1CrossDomainMessenger contract.
It will have ETH from all the failed messages with attached msg.value that are pending replay.

Recommended mitigation

The following mitigations will address the issue:

- When setting the state of xDomainMsgSender in __CrossDomainMessenger_init(),
verify it is previously zero (meaning it is freshly deployed, not upgraded).

- Add another check that successfulMessages for the message is still false after the
external call. successfulMessages only becomes true at this point if the external call
has successfully re-entered relayMessage().

- Set successfulMessages[versionedHash] = true before the external call similar to the
replay protection that exists in OptimismPortal.

Team response

Fixed.

Mitigation Review

The fix implements two of the recommended methods of mitigating the issue, which is

sufficient to address the reentrancy issue. The changes are the following:

- On initialize, xDomainMsgSender is no longer reset to zero when it has already been

previously set.

- An assertion is added to ensure that successfulMessages is still false after the external

call.

The fix also includes an added protective measure against reentrancy for OptimismPortal.

Medium severity findings

TRST-M-1 Anyone can make a victim’s withdrawal TX revert, delaying withdrawals and

making them more expensive

• Category: Griefing attacks, reentrancy attacks

• Source: CrossDomainMessenger.sol

• Status: Acknowledged

Description

An attacker can grief other users by forcing their withdrawals to fail for their initial
submissions. This leads to the victims having to manually replay their own withdrawals and
cover the gas costs for these transactions on top of the reverting transaction.

Below are the steps to execute the griefing:

1. Attacker sends a withdrawal message that is run in the L1CrossDomainMessenger.
2. The withdrawal message calls the attacker's contract which then calls

OptimismPortal::finalizeWithdrawalTransaction() to finalize the withdrawal of the
target user.

https://github.com/ethereum-optimism/optimism/blob/d1651bb22645ebd41ac4bb2ab4786f9a56fc1003/packages/contracts-bedrock/src/L1/OptimismPortal.sol#L328
https://github.com/ethereum-optimism/optimism/pull/8864
https://github.com/ethereum-optimism/optimism/pull/8864/files#diff-a860b6e33b2c00fee38e1a78bb8c449475078a08c2326abdf9a3bc9fba84e37eR360-R366
https://github.com/ethereum-optimism/optimism/pull/8864/files#diff-a860b6e33b2c00fee38e1a78bb8c449475078a08c2326abdf9a3bc9fba84e37eR291-R293
https://github.com/ethereum-optimism/optimism/pull/8864/files#diff-f5f7dc90c748b7d98110fa1cc80f3bedd5aa9f299b691c51b9bb473a20b526caR112-R114
https://github.com/ethereum-optimism/optimism/blob/d1651bb22645ebd41ac4bb2ab4786f9a56fc1003/packages/contracts-bedrock/src/universal/CrossDomainMessenger.sol#L211

Trust Security Optimism Bedrock upgrade

3. When the target user's withdrawal is relayed, it reenters relayMessage which fails the
message due to the reentrancy guard.

4. Since the call to L1CrossDomainMessenger::relayMessage did not revert,
the withdrawal is considered finalized in the OptimismPortal.

Recommended mitigation

Consider refactoring to revert in a reentrant flow, while adding safeguards in place not to brick
transactions. Note that due to the fragile nature of the code, there may be dangerous side
effects.

Team response

Acknowledged. This will be tracked and addressed in future upgrades.

TRST-M-2 Insufficient calldata gas stipend could make initial delivery fail

• Category: Gas-related issues

• Source: CrossDomainMessenger.sol

• Status: Acknowledged

Description

When sending deposit transactions, a user pays for L2 gas costs in L1. The total gas user pays
for is computed via baseGas():

Note that in the above calculation, the calldata overhead accounts for only one external call.
However, when the deposit transaction is executed in L2, this transaction involves at least 2

https://github.com/ethereum-optimism/optimism/blob/d1651bb22645ebd41ac4bb2ab4786f9a56fc1003/packages/contracts-bedrock/src/universal/CrossDomainMessenger.sol#L211
https://github.com/ethereum-optimism/optimism/blob/d1651bb22645ebd41ac4bb2ab4786f9a56fc1003/packages/contracts-bedrock/src/universal/CrossDomainMessenger.sol#L269-L272
https://github.com/ethereum-optimism/optimism/blob/d1651bb22645ebd41ac4bb2ab4786f9a56fc1003/packages/contracts-bedrock/src/universal/CrossDomainMessenger.sol#L269-L272
https://github.com/ethereum-optimism/optimism/blob/d1651bb22645ebd41ac4bb2ab4786f9a56fc1003/packages/contracts-bedrock/src/L1/OptimismPortal.sol#L340-L347
https://github.com/ethereum-optimism/optimism/blob/d1651bb22645ebd41ac4bb2ab4786f9a56fc1003/packages/contracts-bedrock/src/universal/CrossDomainMessenger.sol#L211
https://github.com/ethereum-optimism/optimism/blob/d1651bb22645ebd41ac4bb2ab4786f9a56fc1003/packages/contracts-bedrock/src/universal/CrossDomainMessenger.sol#L335-L352

Trust Security Optimism Bedrock upgrade

external calls. The first external call is the call to relayMessage() and the second external call
is the call to the target address.

As far as Optimism is concerned, minGasLimit should be the amount available when running
the first instruction in the user's contract, ignoring calldata costs. This means that baseGas()
is incorrect and its calldata overhead is insufficient.

Note that since one copy of calldata costs is accounted for, it is extremely unlikely for the
relayMessage() call to revert before storing the delivery status. It will presumably fail the
SafeCall.hasMinGas() check and store the failure immediately. Therefore, impact is limited to
delay and extra gas spending of the withdrawal process.

Recommended mitigation

The correct calculation for calldata overhead costs is:

This takes into consideration the calldata spending of relayMessage (The arbitrary payload as
well as fixed parameters) as well as the target contract calldata (only payload).

Team response

Acknowledged. This will be tracked and addressed in future upgrades.

TRST-M-3 Messages of over 50k bytes can be permanently lost due to unaccounted gas

costs

• Category: Gas-related issues

• Source: CrossDomainMessenger.sol

• Status: Acknowledged

Description

The baseGas() calculation is intended to account for all the overhead costs for executing a
deposit or withdrawal transaction.

https://github.com/ethereum-optimism/optimism/blob/d1651bb22645ebd41ac4bb2ab4786f9a56fc1003/packages/contracts-bedrock/src/universal/CrossDomainMessenger.sol#L211-L306
https://github.com/ethereum-optimism/optimism/blob/d1651bb22645ebd41ac4bb2ab4786f9a56fc1003/packages/contracts-bedrock/src/universal/CrossDomainMessenger.sol#L286-L288
https://github.com/ethereum-optimism/optimism/blob/d1651bb22645ebd41ac4bb2ab4786f9a56fc1003/packages/contracts-bedrock/src/universal/CrossDomainMessenger.sol#L211
https://github.com/ethereum-optimism/optimism/blob/d1651bb22645ebd41ac4bb2ab4786f9a56fc1003/packages/contracts-bedrock/src/universal/CrossDomainMessenger.sol#L335-L352

Trust Security Optimism Bedrock upgrade

The RELAY_CONSTANT_OVERHEAD (200K gas units) should cover all the costs in
relayMessage() up to the hasMinGas() check. It is critical that relayMessage() has enough gas
to at least store the transaction hash in the failedMessages mapping and return. Otherwise,
in the case of withdrawals, the transaction could be permanently lost.

There are dynamic gas costs related to hashing that have not been sufficiently accounted for
in baseGas(). Listed below are the non-negligible operations in terms of gas, in
relayMessage():

require(paused() == false, "CrossDomainMessenger: paused");
- 2 cold SLOADs and 1 cold address CALL - ~7000 gas
- 1 or 2 hashing rounds – gas cost is dependent on the length of the message being

hashed

assert(!failedMessages[versionedHash])
- Cold SLOAD - ~2100 gas

require(successfulMessages[versionedHash] == false, "CrossDomainMessenger: message has already
been relayed");

- Cold SLOAD - ~2100 gas

failedMessages[versionedHash] = true;
- Warm zero to non-zero SSTORE - ~20,000 gas

emit FailedRelayedMessage(versionedHash);
- LOG1 - ~750 gas

Total gas costs - ~32,000 + hash costs

The available gas from baseGas() is:

https://github.com/ethereum-optimism/optimism/blob/d1651bb22645ebd41ac4bb2ab4786f9a56fc1003/packages/contracts-bedrock/src/universal/CrossDomainMessenger.sol#L211-L306
https://github.com/ethereum-optimism/optimism/blob/d1651bb22645ebd41ac4bb2ab4786f9a56fc1003/packages/contracts-bedrock/src/universal/CrossDomainMessenger.sol#L268

Trust Security Optimism Bedrock upgrade

200k + 40k + 40k + 5k + minGasLimit * 64/63 = ~285k + minGasLimit

Note that the calldata overhead component of baseGas() is spent on the calldata cost of the
call from OptimismPortal to CrossDomainMessenger, so it is not included in the calculation
above.

To simplify the computations, a minGasLimit of 0 will be assumed, since a user could specify
it as such and expect the TX to always be replayable through the CrossDomainMessenger
security guarantees. Given the above costs and gas provided by the user, the gas cost of the
hashing operations must equal or exceed ~253,000 gas for relayMessage() to always revert
due to an OOG error.

To simulate the hashing functions, the following code can be used:

function test_demo() public {
 uint256[] memory input = new uint256[](1563);
 for (uint256 i; i < input.length; i++) {
 input[i] = type(uint256).max;
 }
 bytes memory data = abi.encodePacked(input);
 console.log("Data length: ", data.length);
 (bool success,) = address(this).call(abi.encodeWithSelector(this.encodeCrossDomainMessageV1.selector, data));
}

function encodeCrossDomainMessageV1(bytes memory _data) public {
 uint size;
 uint offset;
 assembly { offset := _data }
 size = offset + _data.length;
 console.log("Starting memory size: ", size);
 uint256 startingGas = gasleft();
 console.log("Starting gas: ", startingGas);
 bytes memory b = abi.encodeWithSignature("aaaa",_data);
 assembly { offset := b }
 size = offset + b.length;
 bytes32 kec = keccak256(b);
 bytes memory c = abi.encodeWithSignature("aaaa",_data);
 assembly { offset := c }
 size = offset + c.length;
 kec = keccak256(c);
 console.log("Total gas used: ", startingGas - gasleft());
 console.log("Completed memory size: ", size);
}

In the above simulation (a legacy transaction), the input provided has a size of 50,016 bytes
(1563 32-byte elements in the array). The operations related to the hashing function end up
consuming a total of 278,012 gas units. Given input data of 50,000 bytes, that is enough for
relayMessage() to permanently fail for a withdrawal with 0 minGasLimit. Tweaking the input
to a size of 120,000 bytes, which is the maximum data size allowed in

Trust Security Optimism Bedrock upgrade

OptimismPortal::depositTransaction, the operations would consume gas totaling 791,575
units.

There are two operations responsible for the dynamic gas costs of the hashing functions.
Below is a simplified version of the hashing function:

Keccak256 is largely the SHA3 opcode which has a gas cost that grows linearly based on the
size of the message being hashed. This is the actual hashing operation.

However, responsible for the larger chunk of gas usage is abi.encodeWithSignature() since its
output is bytes data that is always stored in memory. The way Solidity works when working
with dynamic data is that it always stores (MSTORE) new data in an unused offset to avoid
data corruption. This leads to memory expansion which is a very costly operation that grows
quadratically based on the size of expanded memory.

With the hashing function, memory is expanded by the size of the _message parameter in
relayMessage(). When the withdrawal is a legacy withdrawal, the memory expansion is twice
the size of the _message since two hashing functions are executed. Note that a 100k v1
payload would not cost the same as a 50k v0 payload, as although the loop length and memory
expansion size are the same, the memory size starting point is higher for a v1 payload, making
the quadratic cost higher.

Recommended mitigation

Limit the sendMessage() payload size using an upper bound calculated from simulation of v1
and v0 transactions, making sure to leave margin for inaccuracies.

Team response

Acknowledged. This will be tracked and addressed in future upgrades.

Low severity findings

TRST-L-1 User is forced to overpay for deposit gas due to calldata gas calculation

• Category: Gas-related issues

• Source: OptimismPortal.sol

• Status: Acknowledged

Description

https://github.com/ethereum-optimism/optimism/blob/d1651bb22645ebd41ac4bb2ab4786f9a56fc1003/packages/contracts-bedrock/src/universal/CrossDomainMessenger.sol#L180-L200
https://github.com/ethereum-optimism/optimism/blob/d1651bb22645ebd41ac4bb2ab4786f9a56fc1003/packages/contracts-bedrock/src/L1/OptimismPortal.sol#L164-L166

Trust Security Optimism Bedrock upgrade

Gas consumption for non-zero bytes in data passed in transactions is 16 while it is 4 for zero

bytes. However, OptimismPortal::minimumGasLimit does not apply this distinction.

This leads to users overpaying for gas.

Recommended mitigation

The following computation can instead be used for minimum gas limit:

Note that the above calculation is also used by Scroll. However, it would be fair to consider

the heavier gas costs of this loop and opt out of its use.

Team response

Acknowledged. This will be tracked and addressed in future upgrades.

TRST-L-2 The metering logic in OptimismPortal will be incorrect immediately after the

upgrade

• Category: Initialization flaws

• Source: OptimismPortal.sol

• Status: Fixed

Description

During upgrades, OptimismPortal::initialize is called:

https://github.com/ethereum-optimism/optimism/blob/d1651bb22645ebd41ac4bb2ab4786f9a56fc1003/packages/contracts-bedrock/src/L1/OptimismPortal.sol#L164-L166
https://github.com/ethereum-optimism/optimism/blob/d1651bb22645ebd41ac4bb2ab4786f9a56fc1003/packages/contracts-bedrock/src/L1/OptimismPortal.sol#L118-L122
https://github.com/ethereum-optimism/optimism/blob/d1651bb22645ebd41ac4bb2ab4786f9a56fc1003/packages/contracts-bedrock/src/L1/OptimismPortal.sol#L118-L122

Trust Security Optimism Bedrock upgrade

The initializer in ResourceMetering does the following:

Note that the prevBoughtGas is set to 0. It is used for recording all the gas that has been

previously bought within the current block and is used to ensure that the maxResourceLimit

is not exceeded.

In effect, upgrades reset prevBoughtGas and allow users to go beyond the maxResourceLimit.

Recommended mitigation

Remove the resetting of the gas market in ResourceMetering's initializer.

Team response

Fixed.

Mitigation Review

The ResourceParams in ResourceMetering’s initializer is no longer reset when it has already

been previously set.

TRST-L-3 A storage slot is accidentally skipped

• Category: Storage collision issues

• Source: CrossDomainMessenger.sol

• Status: Acknowledged

Description

A previous version of CrossDomainMessenger had a reentrancyLocks state variable. This older

version had the following gap size:

https://github.com/ethereum-optimism/optimism/blob/d1651bb22645ebd41ac4bb2ab4786f9a56fc1003/packages/contracts-bedrock/src/L1/ResourceMetering.sol#L123-L127
https://github.com/ethereum-optimism/optimism/blob/d1651bb22645ebd41ac4bb2ab4786f9a56fc1003/packages/contracts-bedrock/src/L1/ResourceMetering.sol#L123-L127
https://github.com/ethereum-optimism/optimism/pull/8639
https://github.com/ethereum-optimism/optimism/pull/8639/files#diff-674d74f8728f924a833316b38f3c277b467c7cfbbd0536da18b9344a05c1b22aR158-R160
https://github.com/ethereum-optimism/optimism/blob/d1651bb22645ebd41ac4bb2ab4786f9a56fc1003/packages/contracts-bedrock/src/universal/CrossDomainMessenger.sol

Trust Security Optimism Bedrock upgrade

The current version of CrossDomainMessenger no longer has the reentrancyLocks state

variable. However, its gap size has increased to 44.

The latest CrossDomainMessenger is now using 1 more storage slot than it should.

Recommended mitigation

The latest CrossDomainMessenger should have a gap size of 43 so that its total storage slots

would be a multiple of 50. With a gap size of 43, its total storage slots would be 250, which is

a multiple of 50.

Team response

Acknowledged. This will be tracked and addressed in future upgrades.

TRST-L-4 Upgrades are resetting the state of unused storage slots

• Category: Storage collision issues

• Source: l1.go

• Status: Acknowledged

Description

L1 upgrades are a 2-step process which involves replacing the implementation contract with

the StorageSetter and directly manipulating data in storage slots as the first step. This is

necessary to reset the _initialized slot to be able to re-initialize the Proxy contracts.

There is an issue in the upgrade logic for some of the L1 contracts since they are resetting

state for storage slots that are unused. The table below details the issues:

https://github.com/ethereum-optimism/optimism/blob/d1651bb22645ebd41ac4bb2ab4786f9a56fc1003/op-chain-ops/upgrades/l1.go
https://github.com/ethereum-optimism/optimism/blob/d1651bb22645ebd41ac4bb2ab4786f9a56fc1003/packages/contracts-bedrock/src/universal/StorageSetter.sol

Trust Security Optimism Bedrock upgrade

Relevant references:

- OptimismMintableERC20Factory

- OptimismPortal

- SystemConfig

- L2OutputOracle

- L1StandardBridge

- L1CrossDomainMessenger

Recommended mitigation

Remove all the state manipulation code that are no longer necessary and are being applied to

state variables that no longer exist. Leaving these may lead to issues in the future related to

corrupt data.

Team response

Acknowledged. This will be tracked and addressed in future upgrades.

TRST-L-5 The gas buffer set is insufficient, leading to risks of unexpected reverts

• Category: Gas-related flaws

• Source: OptimismPortal.sol

• Status: Acknowledged

Description

The CrossDomainMessenger introduced a RELAY_GAS_CHECK_BUFFER which has a value of

5000. This buffer represents the gas that needs to be reserved for the execution between the

hasMinGas() check and the external call in relayMessage().

https://github.com/ethereum-optimism/optimism/blob/develop/op-chain-ops/upgrades/l1.go#L364-L370
https://github.com/ethereum-optimism/optimism/blob/develop/op-chain-ops/upgrades/l1.go#L425-L434
https://github.com/ethereum-optimism/optimism/blob/develop/op-chain-ops/upgrades/l1.go#L496-L536
https://github.com/ethereum-optimism/optimism/blob/develop/op-chain-ops/upgrades/l1.go#L276-L285
https://github.com/ethereum-optimism/optimism/blob/develop/op-chain-ops/upgrades/l1.go#L211-L214
https://github.com/ethereum-optimism/optimism/blob/develop/op-chain-ops/upgrades/l1.go#L83-L87
https://github.com/ethereum-optimism/optimism/blob/d1651bb22645ebd41ac4bb2ab4786f9a56fc1003/packages/contracts-bedrock/src/L1/OptimismPortal.sol#L118-L122
https://github.com/ethereum-optimism/optimism/blob/d1651bb22645ebd41ac4bb2ab4786f9a56fc1003/packages/contracts-bedrock/src/universal/CrossDomainMessenger.sol#L268
https://github.com/ethereum-optimism/optimism/blob/d1651bb22645ebd41ac4bb2ab4786f9a56fc1003/packages/contracts-bedrock/src/universal/CrossDomainMessenger.sol#L287

Trust Security Optimism Bedrock upgrade

The assumption is that this 5000 buffer is enough to cover the gas required in the following

code between hasMinGas() and SafeCall.call():

A breakdown of the gas costs for the execution between the gas check and the external call

follows:

- Cold SLOAD of xDomainMsgSender in xDomainMsgSender !=

Constants.DEFAULT_L2_SENDER - 2100 gas

- Non-zero to non-zero SSTORE of xDomainMsgSender in xDomainMsgSender =

_sender - 2900 gas

- Other opcodes for comparisons, additions, multiplications and jumps - ~200-300 gas

The gas check buffer is insufficient by a few hundred gas units.

Recommended mitigation

Increase the gas check buffer by 1000 gas to 6000 gas for additional safety.

Team response

Acknowledged. This will be tracked and addressed in future upgrades.

TRST-L-6 OptimismPortal consumes all forwarded gas even if the TX is undeliverable

• Category: Gas-related flaws

Trust Security Optimism Bedrock upgrade

• Source: OptimismPortal.sol

• Status: Acknowledged

Description

If a user does not forward enough gas to cover the gas cost of their deposit when calling

depositTransaction(), then all the forwarded gas will be burned and the transaction will be

reverted. A check can be implemented to prevent this unnecessary gas loss at the expense of

the user.

Suppose a user calls OptimismPortal::depositTransaction() and the following parameters

apply:

 L2 base fee – 10 gwei

 L1 base fee – 50 gwei

 gasLimit – 1M

 gas forwarded by the caller – 150,000

 The total gas that should be burned on L1 is: 1e6 * 10e9 / 50e9 = 200,000

With the above parameters, the 150,000 gas forward by the caller is not enough to cover the

gas cost of 200,000. However, the metering function will still proceed with burning all the

150,000 gas of the caller and revert with an OOG (out-of-gas) error.

The issue lies in Burn.gas():

For simplicity, assume the _amount is the total gas cost of 200,000 and gasleft() is zero to get

the maximum amount of the lefthand-side of the condition. Since the condition 150,000 <

200,000 will always be true, all the 150,000 gas will be burned and it will attempt to burn more

but will revert due to no more gas left.

In fact, any deposit transaction that has insufficient gas forwarded with it will lose all that gas.

Recommended mitigation

A check can be added to Burn.gas() to prevent unnecessary burning when the forwarded gas

is insufficient.

https://github.com/ethereum-optimism/optimism/blob/d1651bb22645ebd41ac4bb2ab4786f9a56fc1003/packages/contracts-bedrock/src/L1/OptimismPortal.sol#L366-L407
https://github.com/ethereum-optimism/optimism/blob/d1651bb22645ebd41ac4bb2ab4786f9a56fc1003/packages/contracts-bedrock/src/L1/OptimismPortal.sol#L366-L407
https://github.com/ethereum-optimism/optimism/blob/d1651bb22645ebd41ac4bb2ab4786f9a56fc1003/packages/contracts-bedrock/src/L1/ResourceMetering.sol#L137-L145
https://github.com/ethereum-optimism/optimism/blob/d1651bb22645ebd41ac4bb2ab4786f9a56fc1003/packages/contracts-bedrock/src/libraries/Burn.sol#L15-L21

Trust Security Optimism Bedrock upgrade

Team response

Acknowledged. This will be tracked and addressed in future upgrades.

TRST-L-7 Users can underpay gas for contract creations, which would make them fail

• Category: Gas-related flaws

• Source: OptimismPortal.sol

• Status: Acknowledged

Description

For deposit transactions, a minimum gas limit is enforced to ensure that gas consumption on
L2 has been paid for by users. However, this minimum gas limit only accounts for the data
length and intrinsic TX cost (21000 gas units):

This minimum gas limit does not account for the case of contract creations where it has a
minimum fixed cost of 32000 gas on top of the inherent 21k cost. This leads to users possibly
attempting to deploy contracts with a gas amount that is guaranteed to be insufficient.

Recommended mitigation

The minimum gas limit should account for the fixed costs and dynamic costs of contract

creation when the deposit transaction is a contract creation.

Team response

Acknowledged. This will be tracked and addressed in future upgrades.

https://github.com/ethereum-optimism/optimism/blob/d1651bb22645ebd41ac4bb2ab4786f9a56fc1003/packages/contracts-bedrock/src/L1/OptimismPortal.sol#L385
https://github.com/ethereum-optimism/optimism/blob/d1651bb22645ebd41ac4bb2ab4786f9a56fc1003/packages/contracts-bedrock/src/L1/OptimismPortal.sol#L385

Trust Security Optimism Bedrock upgrade

TRST-L-8 Different ERC20Factory addresses between chains makes it impossible to

deploy ERC20s with the same address on all the chains

• Category: Deployments

• Source: OptimismMintableERC20Factory.sol

• Status: Acknowledged

Description

OptimismMintableERC20Factory deploys OptimisMintableERC20 with the use of CREATE2.
The intention for this is to enable deploying a token contract with the same address on all the
OP Stack chains. For the contract to have the same address on all the chains, the following
details must be consistent on every deployment on each chain:

1. Sender address – This would be the address of the OptimismMintableERC20Factory.
2. Bytecode of the OptimismMintableERC20 contract
3. Constructor arguments passed to the OptimismMintableERC20 contract which are

BRIDGE, _remoteToken, _name, _symbol, and _decimals.

Currently, the address for the OptimismMintableERC20Factory contract is different between
Optimism and Base. This would make it impossible to have the same address for any ERC20
contracts deployed with the Factory in those chains.

Also worth noting is that the counterpart for Optimism’s USDC, would be USDbC on Base.
USDbC has a different name and symbol for its token. This difference in the constructor
arguments would lead to different token addresses. The current implementation of the
Factory does not allow for differences in the name, symbol, and decimals of the token if they
are to have the same address on different chains.

Recommended mitigation

The OptimismMintableERC20Factory must be deployed to the same address on all the chains

to enable token deployers to deploy the same address for their token. If there is value to

enabling using different names, symbols, and decimals for the tokens while deploying to the

same address, these details must instead be stored in state variables and not passed as

constructor arguments. If not passed as constructor arguments, these details can instead be

set in and fetched from a different contract.

Team response

Acknowledged.

Additional recommendations

Including constructor arguments in the salt is redundant

The OptimismMintableERC20Factory deploys OptimismMintableERC20 contracts via CREATE2

for deterministic addresses to enable a token to have the same address across all OP Stack

chains. The salt input to CREATE2 includes the construct arguments such as _remoteToken,

_name, _symbol, and _decimals. This is redundant since the constructor arguments already

https://github.com/ethereum-optimism/optimism/blob/develop/packages/contracts-bedrock/src/universal/OptimismMintableERC20Factory.sol#L100
https://github.com/ethereum-optimism/optimism/blob/develop/packages/contracts-bedrock/src/universal/OptimismMintableERC20Factory.sol#L100-L102
https://github.com/ethereum-optimism/optimism/blob/develop/packages/contracts-bedrock/src/universal/OptimismMintableERC20Factory.sol#L100

Trust Security Optimism Bedrock upgrade

affect CREATE2 address derivation. In this case, salt could be a zero value or a value set by the

user instead.

Centralization risks

Only risks introduced by the upgrade in scope will be detailed below.

 TRST-CR-1 The SuperchainConfig guardian can pause all Superchains

The upgrade delegates responsibility for pausing withdrawals to the SuperchainConfig

contract. This means all chains share the pause button, and therefore to handle an issue in

one particular chain would require pausing all Superchains. It is acknowledged that the chosen

model presents an advantage, whereby all chains which presumably share the same source

code, can be paused in tandem, should a code-level emergency arise.

		2024-01-11T15:34:54+0200
	Trust

