
Optimism: SystemConfig and

Withdrawal Updates
Security Assessment

January 18, 2023

Prepared for:

Matthew Slipper

OP Labs

Prepared by: Michael Colburn, Anish Naik, and David Pokora



About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high- end security research with a real -world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.
228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 Optimism Security Assessment
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com


Notices and Remarks

Copyright and Distribution
© 2023 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to OP Labs
under the terms of the project statement of work and has been made public at OP Labs’s
request. Material within this report may not be reproduced or distributed in part or in
whole without the express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 Optimism Security Assessment
PUBLIC

https://github.com/trailofbits/publications


Table of Contents

About Trail of Bits 1

Notices and Remarks 2

Table of Contents 3

Executive Summary 4

Project Summary 6

Project Goals 7

Project Targets 8

Project Coverage 9

Codebase Maturity Evaluation 12

Summary of Findings 14

Detailed Findings 15

1. Ability to block withdrawals by resubmitting withdrawal proofs 15

Summary of Recommendations 17

A. Vulnerability Categories 18

B. Code Maturity Categories 20

C. System Configuration and Withdrawal Properties 22

D. Fix Review Results 24

Detailed Fix Review Results 25

Trail of Bits 3 Optimism Security Assessment
PUBLIC



Executive Summary

Engagement Overview
OP Labs engaged Trail of Bits to review the security of its system configuration and
two-step withdrawal workflows. From November 14 to December 9, 2022, a team of three
consultants conducted a security review of the client-provided source code, with eight
person-weeks of effort. Details of the project’s timeline, test targets, and coverage are
provided in subsequent sections of this report.

Project Scope
Our testing efforts were focused on the identification of flaws that could result in a
compromise of confidentiality, integrity, or availability of the target system. We conducted
this audit with full knowledge of the system, including access to the source code and
documentation. We performed static and dynamic automated and manual testing of the
target system and its codebase.

Summary of Findings
The audit uncovered one significant flaw that could impact system availability. Details on
the sole finding are provided below.

EXPOSURE ANALYSIS

Severity Count

High 1

Medium 0

Low 0

Informational 0

Undetermined 0

CATEGORY BREAKDOWN

Category Count

Data Validation 1

Trail of Bits 4 Optimism Security Assessment
PUBLIC



Notable Findings
A significant flaw that impacts system confidentiality, integrity, or availability is described
below.

● TOB-OPTCW-1
An attacker could block the finalization of a user’s withdrawal by resubmitting the
proof for that withdrawal, as resubmission would reset the seven-day finalization
period.

Trail of Bits 5 Optimism Security Assessment
PUBLIC



Project Summary

Contact Information
The following managers were associated with this project:

Dan Guido, Account Manager Brooke Langhorne, Project Manager
dan@trailofbits.com brooke.langhorne@trailofbits.com

The following engineers were associated with this project:

Michael Colburn, Consultant Anish Naik, Consultant
michael.colburn@trailofbits.com anish.naik@trailofbits.com

David Pokora, Consultant
david.pokora@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

November 10, 2022 Pre-project kickoff call

November 21, 2022 Status update meeting #1

November 28, 2022 Status update meeting #2

December 6, 2022 Status update meeting #3

December 13, 2022 Delivery of report draft; report readout meeting

December 13, 2022 Addition of fix review

January 18, 2023 Delivery of final report

Trail of Bits 6 Optimism Security Assessment
PUBLIC

mailto:dan@trailofbits.com
mailto:brooke.langhorne@trailofbits.com
mailto:michael.colburn@trailofbits.com
mailto:anish.naik@trailofbits.com
mailto:david.pokora@trailofbits.com


Project Goals

The engagement was scoped to provide a security assessment of Optimism’s system
configuration and two-step withdrawal workflows. Specifically, we sought to answer the
following non-exhaustive list of questions:

● Is the op-node’s parsing and validation of ConfigUpdate events sufficient to detect
maliciously crafted or malformed events?

● Could an attacker bypass the access controls in the layer 1 (L1) SystemConfig
contract and update the system configuration?

● Does the op-geth execution engine handle system configuration updates correctly,
and do all transactions executed after an update use the new configuration?

● Could an attacker spoof or replay a withdrawal request to steal funds from the
OptimismPortal contract?

● Could an attacker replay a withdrawal proof to cause unexpected behavior?

● Could an attacker finalize a withdrawal without first proving it?

● Could an attacker finalize a withdrawal before the completion of the finalization
period?

Trail of Bits 7 Optimism Security Assessment
PUBLIC



Project Targets

The engagement involved a review and testing of the targets listed below.

optimism

Repository https://github.com/ethereum-optimism/optimism

Versions 1bfe79f20b37a77c1158e7c5fdbff2ae109e0a1d
ee96ff8585699b054c95c6ff4a2411ee9fedcc87 (contracts)
991120f6d2009b4a96580d7db3021694439c63f5 (Merkle trie)

Types Golang and Solidity

Platforms Linux, macOS, Windows, and the EVM

op-geth

Repository https://github.com/ethereum-optimism/op-geth

Version 68bfa8b473bb8770216517f007b521fab41c5afa

Type Golang

Platforms Linux, macOS, and Windows

Trail of Bits 8 Optimism Security Assessment
PUBLIC

https://github.com/ethereum-optimism/optimism
https://github.com/ethereum-optimism/op-geth


Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches and their results include the following:

● System configuration workflow. The system configuration workflow is the process
for updating the layer 2 (L2) block gas limit, L2 per-transaction gas costs, or batcher
address in response to events emitted from L1. When the system configuration is
updated, the L1 SystemConfig contract emits a ConfigUpdate event. The event is
then picked up by the op-node during the L2 chain derivation process and added to
the execution payload as part of an L1InfoDeposit transaction. Once op-geth
executes that transaction, the new system configuration will apply to all subsequent
L2 transactions. The components of this workflow are described below.

○ SystemConfig. The L1 SystemConfig contract contains three functions
used to update the L2 gas limit, the per-transaction gas costs, and the
address that is allowed to submit batched sequencer transactions,
respectively. When one of those parameters is updated, the contract emits a
ConfigUpdate event.

■ We manually reviewed the contract’s access controls to ensure that
only the owner of the contract can update the system configuration.

■ We manually reviewed the initialize function to ensure that it can
be called only once.

■ We manually reviewed the bounds on updates to the gas limit to
ensure that the MINIMUM_GAS_LIMIT required by the
ResourceMetering contract is not violated.

■ We manually reviewed the contract’s emission of events to verify that
every parameter update is tied to a unique event.

○ op-node. When a ConfigUpdate event is emitted, the op-node parses it,
validates it, and then adds it to the PayloadAttributes of the next L2 block
to be executed by op-geth.

■ We manually reviewed the parsing of ConfigUpdate events to ensure
that a malicious party could not manipulate the system configuration
by spoofing an event.

■ We performed dynamic validation of the parsing of ConfigUpdate
events, checking for edge cases in which a malformed or malicious
ConfigUpdate event would be accepted as valid.

Trail of Bits 9 Optimism Security Assessment
PUBLIC



■ We manually reviewed the creation of L1InfoDeposit transactions
to ensure that those transactions include all system configuration
parameters. Additionally, we verified that all necessary values and the
correct primitive types are set for the call to
L1Block.setL1BlockValues.

■ We manually reviewed the marshaling and unmarshaling of
L1InfoDeposit transactions to ensure that the operations preserve
all system configuration parameters.

■ We performed dynamic validation of the marshaling and
unmarshaling of L1InfoDeposit transactions to ensure that those
operations are symmetric.

○ op-geth. The calldata of an L1InfoDeposit transaction executed by
op-geth contains a call to L1Block.setL1BlockValues. This call applies
L1 system configuration changes to L2. All subsequent transactions should
then use the system configuration parameters set in that predeployed L2
contract.

■ We manually reviewed the NewL1CostFunc function to ensure that it
uses the correct storage slots from the L1Block contract to calculate
per-transaction gas costs.

■ We manually reviewed the gas cost calculations to ensure that the use
of the overhead and scalar values adheres to the documentation.

■ We manually reviewed the state transition function to verify that
L1InfoDeposit transactions do not carry a gas cost, that those
transactions will still be included in the block if they fail, and that all
non-deposit transactions use the L1CostFunc function to calculate
gas costs.

End-to-end system (E2E) test. We wrote an E2E dynamic test for the system
configuration workflow to test situations such as gas price changes. For example, we
checked whether setting a high gas price would block the processing of transactions
and whether resetting a high gas price to a low one would cause transaction
processing to resume.

● Two-step withdrawal workflow. To withdraw funds from L2 to L1, a user must first
prove that he or she initiated a withdrawal on L2. Then, after the seven-day
finalization period, the user can finalize the withdrawal to L1. This process is
executed through calls to the L1 OptimismPortal contract.

Trail of Bits 10 Optimism Security Assessment
PUBLIC



○ We manually reviewed the proveWithdrawalTransaction function to
ensure that a malicious user could not spoof another user’s withdrawal
request and prevent that user from successfully withdrawing funds to L1.
This led us to discover that a malicious user could repeatedly submit proofs
for another user’s withdrawal request, extending the finalization period and
preventing that user from finalizing the withdrawal (TOB-OPTCW-1).

○ We manually reviewed the finalizeWithdrawalTransaction function to
ensure that withdrawals cannot be replayed, that the seven-day finalization
period is enforced for all requests, and that the function cannot be
reentered. We also verified that a malicious user could not manipulate
another user’s request and steal that user’s funds.

Coverage Limitations
Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. Specifically, we were unable to perform comprehensive testing of the changes
made to the system during the engagement. Details on those changes are provided below.

● During the final week of the engagement, the OP Labs team delivered two updated
commits to the optimism repository for us to review: ee96ff8 and 991120f. The
first commit contains changes to the ResourceMetering, L2ToL1MessagePasser,
and L2OutputOracle contracts. The second commit contains a refactored
MerkleTrie library contract. We reviewed those changes but lacked the time to
evaluate them in the context of the larger system.

● On the final day of the engagement, we received two additional pull requests (pull
requests 4329 and 4337) that included minor changes to the OptimismPortal and
CrossDomainMessenger contracts. We reviewed those changes but lacked the time
to evaluate them in the context of the larger system.

Trail of Bits 11 Optimism Security Assessment
PUBLIC

https://github.com/ethereum-optimism/optimism/pull/4329
https://github.com/ethereum-optimism/optimism/pull/4337


Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

Category Summary Result

Arithmetic We did not identify any issues related to the arithmetic
used in either workflow. All of the arithmetic is
straightforward and easy to reason about, and some of
the gas-metering math has been refactored into a library
contract to improve its readability and maintainability.

Satisfactory

Authentication /
Access Controls

The authentication and access controls on system
configuration updates and two-step withdrawals are
sufficient. We did not identify any opportunities to
bypass those access controls.

Strong

Complexity
Management

The smart contracts are not overly complex, and their
functionality is generally fairly simple and easy to
understand. The expected behavior of functions in the
op-node and op-geth code is described in code
comments.

Satisfactory

Data Handling The data validation performed in the system
configuration workflow is sufficient to prevent the
acceptance of a malicious or malformed event. However,
there is no validation preventing one user from
submitting proofs for another user’s withdrawal request;
thus, a malicious user could extend the escrow period for
another user’s withdrawal indefinitely by repeatedly
submitting proofs (TOB-OPTCW-1).

Moderate

Documentation The code is generally well commented, and the
specification documentation in the repository includes
operational and process details. However, that

Moderate

Trail of Bits 12 Optimism Security Assessment
PUBLIC



documentation is outdated, and parts of it are
incomplete. For example, the specification on the
withdrawal process does not mention that the process of
proving and finalizing a withdrawal has been split into
two separate steps.

Low-Level
Manipulation

The codebase uses inline assembly only where
necessary, such as in libraries for data serialization.
However, certain uses of assembly lack documentation
describing their exact purpose. The commits provided
during the last week of the audit (described in the Project
Coverage section) include additional assembly code,
which is used to effectively bulk-delete elements of an
array. We also identified one low-level call, which is safe
from reentrancy and memory-expansion attacks.

Satisfactory

Memory Safety
and Error
Handling

We did not identify any memory safety concerns, and
both workflows’ error-handling mechanisms are
generally appropriate.

Strong

Testing and
Verification

We did not identify any issues that could have been
caught through additional unit or dynamic testing.
However, we recommend that the OP Labs team
continue checking for gaps in its testing (like those in
system_config.go) and fill any gaps it identifies with
unit and fuzz tests. The team should also document all
critical system properties (including those listed in
appendix C) and perform a manual review and dynamic
testing of those properties.

Satisfactory

Trail of Bits 13 Optimism Security Assessment
PUBLIC



Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 Ability to block withdrawals by resubmitting
withdrawal proofs

Data Validation High

Trail of Bits 14 Optimism Security Assessment
PUBLIC



Detailed Findings

1. Ability to block withdrawals by resubmitting withdrawal proofs

Severity: High Difficulty: Low

Type: Data Validation Finding ID: TOB-OPTCW-1

Target:
optimism/packages/contracts-bedrock/contracts/L1/OptimismPortal.sol

Description
The withdrawal of funds from L2 to L1 involves a two-step process on L1: a user (having
initiated a transaction on L2) must prove that the withdrawal transaction is valid and then
trigger its execution after the finalization period has elapsed. During the seven-day
finalization period, any user can resubmit the withdrawal proof to the OptimismPortal
contract to restart the finalization period. This means that by repeatedly resubmitting a
proof, one user could effectively prevent another user from finalizing a withdrawal.

The code comments in the proveWithdrawalTransaction function mention a “replay
check” in the finalization process that prevents a transaction from being finalized and
executed more than once. However, there does not appear to be any protection against
the replay of a proof for a pending withdrawal. When a proof is replayed, the stored
timestamp is overwritten, effectively restarting the delay before the finalization of the
withdrawal.

// Designate the withdrawalHash as proven by storing the `outputRoot`, `timestamp`,
// and `l2BlockNumber` in the `provenWithdrawals` mapping. A certain withdrawal
// can be proved multiple times and thus overwrite a previously stored
`ProvenWithdrawal`,
// but this is safe due to the replay check in `finalizeWithdrawalTransaction`.
provenWithdrawals[withdrawalHash] = ProvenWithdrawal({

outputRoot: outputRoot,
timestamp: uint128(block.timestamp),
l2BlockNumber: uint128(_l2BlockNumber)

});

Figure 1.1: The OptimismPortal.proveWithdrawalTransaction method allows the
resubmission of withdrawal proofs, which resets the timestamp of the finalization period.

(optimism/packages/contracts-bedrock/contracts/L1/OptimismPortal.sol#L204
-L212)

Trail of Bits 15 Optimism Security Assessment
PUBLIC

https://github.com/ethereum-optimism/optimism/blob/89526c42d45a98387578b71a7c8d016bdbc40797/packages/contracts-bedrock/contracts/L1/OptimismPortal.sol#L204-L212
https://github.com/ethereum-optimism/optimism/blob/89526c42d45a98387578b71a7c8d016bdbc40797/packages/contracts-bedrock/contracts/L1/OptimismPortal.sol#L204-L212


// Ensure that the withdrawal's finalization period has elapsed.
require(

_isFinalizationPeriodElapsed(provenWithdrawal.timestamp),
"OptimismPortal: proven withdrawal finalization period has not elapsed"

);

Figure 1.2: The OptimismPortal.finalizeWithdrawalTransaction method checks the
timestamp.

(optimism/packages/contracts-bedrock/contracts/L1/OptimismPortal.sol#L247
-L251)

Exploit Scenario
An Optimism user who has deposited funds on L2 wishes to perform a withdrawal. To do
that, he calls the L1 OptimismPortal.proveWithdrawalTransaction method with
arguments that prove the withdrawal request was processed on L2. An attacker captures
the arguments passed to the method and repeatedly replays the request, calling the
method directly. Because there is no check ensuring that the withdrawal transaction has
not already been proved, the finalization period is reset with each call, blocking the user
from withdrawing her funds.

Recommendations
Short term, add a require statement to proveWithdrawalTransaction to ensure that
provenWithdrawal[withdrawalHash].timestamp is equal to zero. This will prevent
withdrawal transactions from being proved multiple times.

Long term, be mindful of the risk of timing-based attacks such as front-running and replay
attacks, which can produce undefined behavior within a system. Additionally, document
the system’s state machine in as much detail as possible to uncover any other
opportunities for such attacks.

Trail of Bits 16 Optimism Security Assessment
PUBLIC

https://github.com/ethereum-optimism/optimism/blob/89526c42d45a98387578b71a7c8d016bdbc40797/packages/contracts-bedrock/contracts/L1/OptimismPortal.sol#L247-L251
https://github.com/ethereum-optimism/optimism/blob/89526c42d45a98387578b71a7c8d016bdbc40797/packages/contracts-bedrock/contracts/L1/OptimismPortal.sol#L247-L251


Summary of Recommendations

The Optimism optimistic rollup node and execution engine are works in progress with
multiple planned iterations. Trail of Bits recommends that OP Labs address the findings
detailed in this report and take the following additional steps prior to deployment:

● Continue to expand the documentation and specifications, and ensure that they are
kept up to date.

● Continue to document important system invariants.

● Use the improved invariant documentation to identify any gaps in the system’s
testing, and then fill in those gaps.

● Continue reviewing the internal development processes to identify any
improvements to the development life cycle that would increase the system’s safety
and resilience.

Trail of Bits 17 Optimism Security Assessment
PUBLIC



A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category Description

Access Controls Insufficient authorization or assessment of rights

Auditing and Logging Insufficient auditing of actions or logging of problems

Authentication Improper identification of users

Configuration Misconfigured servers, devices, or software components

Cryptography A breach of system confidentiality or integrity

Data Exposure Exposure of sensitive information

Data Validation Improper reliance on the structure or values of data

Denial of Service A system failure with an availability impact

Error Reporting Insecure or insufficient reporting of error conditions

Patching Use of an outdated software package or library

Session Management Improper identification of authenticated users

Testing Insufficient test methodology or test coverage

Timing Race conditions or other order-of-operations flaws

Undefined Behavior Undefined behavior triggered within the system

Trail of Bits 18 Optimism Security Assessment
PUBLIC



Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

Trail of Bits 19 Optimism Security Assessment
PUBLIC



B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this
document.

Code Maturity Categories

Category Description

Arithmetic The proper use of mathematical operations and semantics

Auditing The use of event auditing and logging to support monitoring

Authentication /
Access Controls

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

Complexity
Management

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

Configuration The configuration of system components in accordance with best
practices

Cryptography and
Key Management

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

Data Handling The safe handling of user inputs and data processed by the system

Decentralization The presence of a decentralized governance structure for mitigating
insider threats and managing risks posed by contract upgrades

Documentation The presence of comprehensive and readable codebase documentation

Front-Running
Resistance

The system’s resistance to front-running attacks

Low-Level
Manipulation

The justified use of inline assembly and low-level calls

Maintenance The timely maintenance of system components to mitigate risk

Memory Safety
and Error Handling

The presence of memory safety and robust error-handling mechanisms

Testing and
Verification

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

Trail of Bits 20 Optimism Security Assessment
PUBLIC



Rating Criteria

Rating Description

Strong No issues were found, and the system exceeds industry standards.

Satisfactory Minor issues were found, but the system is compliant with best practices.

Moderate Some issues that may affect system safety were found.

Weak Many issues that affect system safety were found.

Missing A required component is missing, significantly affecting system safety.

Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Further
Investigation
Required

Further investigation is required to reach a meaningful conclusion.

Trail of Bits 21 Optimism Security Assessment
PUBLIC



C. System Configuration and Withdrawal Properties

This appendix lists some of the more critical properties that must hold for the system
configuration workflow and two-step withdrawal process.

System Configuration

● All honest ConfigUpdate events should be successfully parsed by the op-node
with no errors. The primary risk to successful parsing is a batcher address that is not
correctly padded with 12 zeros (in version 0 of the SystemConfig contract).

● Any malicious or malformed ConfigUpdate events should be detected by the
op-node during parsing.

● The PayloadAttributes for the next L2 block should always hold the latest system
configuration values. The PayloadAttributes values can be cross-referenced with
those set in the L1 SystemConfig contract.

● L1InfoDeposit transactions should cost zero gas.

● Deposit transactions should be included in the next L2 block regardless of whether
they executed successfully.

● The execution of an L1InfoDeposit transaction should never revert. This property
may require additional analysis and validation.

● The system configuration values in the L1 SystemConfig contract and the L2
L1Block contract should be the same after the successful execution of an
L1InfoDeposit transaction.

Two-Step Withdrawal Process

● Withdrawals should not be replayable on L1.

● Withdrawal requests must be proved before their finalization.

● Unless the outputRoot value of the L2 L2ToL1MessagePasser contract has
changed, it should not be possible to prove a withdrawal request more than once.

● Only one withdrawal request can be finalized for each transaction.

● Once a withdrawal has been proved, it cannot be finalized until the finalization
period (indicated by FINALIZATION_PERIOD_SECONDS) has elapsed.

Trail of Bits 22 Optimism Security Assessment
PUBLIC



● All withdrawals must be initiated on L2. This can be tested indirectly through
thorough testing of the MerkleTrie library.

● A withdrawal can be proved only if the storage root of the L2 block that holds the
withdrawal request has been posted to the L2OutputOracle L1 contract.

Trail of Bits 23 Optimism Security Assessment
PUBLIC



D. Fix Review Results

On December 13, 2022, Trail of Bits reviewed the fix implemented by the OP Labs team for
the issue identified in this report.

We reviewed the fix to determine its effectiveness in resolving the associated issue. For
additional information, see the Detailed Fix Review Results.

ID Title Severity Status

1 Ability to block withdrawals by resubmitting
withdrawal proofs

High Resolved

Trail of Bits 24 Optimism Security Assessment
PUBLIC



Detailed Fix Review Results
TOB-OPTCW-1: Ability to block withdrawals by resubmitting withdrawal proofs
Resolved. The OP Labs team updated the proveWithdrawalTransaction function; the
function now allows a withdrawal request to be proved multiple times only if the
outputRoot value of the L2ToL1MessagePasser contract has changed. (PR 4057)

Trail of Bits 25 Optimism Security Assessment
PUBLIC

https://github.com/ethereum-optimism/optimism/pull/4057/

