
Optimism Drippie Security Review

Auditors

Noah Marconi, Lead Security Researcher

Emanuele Ricci, Security Researcher

Hrishikesh Bhat, Apprentice

0xNazgul, Apprentice

Report prepared by: Pablo Misirov & 0xNazgul

October 3, 2022

Contents

1 About Spearbit 2

2 Introduction 2

3 Risk classification 2
3.1 Impact . 2
3.2 Likelihood . 2
3.3 Action required for severity levels . 2

4 Executive Summary 3

5 Findings 4
5.1 Medium Risk . 4

5.1.1 Permitting Multiple Drip Calls Per Block . 4
5.2 Low Risk . 5

5.2.1 Version Bump to Latest . 5
5.2.2 DOS from External Calls in Drippie.executable / Drippie.drip 5
5.2.3 Use call.value over transfer in withdrawETH . 5
5.2.4 Input Validation Checks for Drippie.create . 6
5.2.5 Ownership Initialization and Transfer Safety on Owned.setOwner 6
5.2.6 Unchecked Return and Handling of Non-standard Tokens in AssetReceiver 7
5.2.7 AssetReceiver Allows Burning ETH, ERC20 and ERC721 Tokens 7
5.2.8 AssetReceiver Not Implementing onERC721Received Callback Required by safeTransfer-

From. 8
5.2.9 Both Transactor.CALL and Transactor.DELEGATECALL Do Not Emit Events 8
5.2.10 Both Transactor.CALL and Transactor.DELEGATECALL Do Not Check the Result of the Ex-

ecution . 8
5.2.11 Transactor.DELEGATECALL Data Overwrite and selfdestruct Risks 9

5.3 Gas Optimization . 14
5.3.1 Use calldata over memory . 14
5.3.2 Avoid String names in Events and Mapping Key . 14
5.3.3 Avoid Extra sloads on Drippie.status . 14
5.3.4 Use Custom Errors Instead of Strings . 15
5.3.5 Increment In The For Loop Post Condition In An Unchecked Block 16

5.4 Informational . 16
5.4.1 DripState.count Location and Use . 16
5.4.2 Type Checking Foregone on DripCheck . 17
5.4.3 Confirm Blind ERC721 Transfers are Intended . 17
5.4.4 Code Contains Empty Blocks . 17
5.4.5 Code Structure Deviates From Best-Practice . 18
5.4.6 Missing or Incomplete NatSpec . 18
5.4.7 Checking Boolean Against Boolean . 18
5.4.8 Drippie.executable Never Returns false Only true or Reverts 19
5.4.9 Drippie Use Case Notes . 20
5.4.10 Augment Documentation for dripcheck.check Indicating Precondition Check Only Performed 20
5.4.11 Considerations on the drip state.last and state.config.interval values 21
5.4.12 Support ERC1155 in AssetReceiver . 21
5.4.13 Reorder DripStatus Enum for Clarity . 22
5.4.14 _gas is Unneeded as Transactor.CALL and Transactor.DELEGATECALL Function Argument 22
5.4.15 Licensing Conflict on Inherited Dependencies . 22
5.4.16 Rename Functions for Clarity . 23
5.4.17 Owner Has Permission to Drain Value from Drippie Contract 23

1

1 About Spearbit

Spearbit is a decentralized network of expert security engineers offering reviews and other security related services
to Web3 projects with the goal of creating a stronger ecosystem. Our network has experience on every part of the
blockchain technology stack, including but not limited to protocol design, smart contracts and the Solidity compiler.
Spearbit brings in untapped security talent by enabling expert freelance auditors seeking flexibility to work on
interesting projects together.

Learn more about us at spearbit.com

2 Introduction

Drippie is a system for managing automated contract interactions. A specific interaction is called a "drip" and
can be executed according to some condition (called a dripcheck) and an execution interval. Drips cannot be
executed faster than the execution interval. Drips can trigger arbitrary contract calls where the calling contract is
this contract address. Drips can also send ETH value, which makes them ideal for keeping addresses sufficiently
funded with ETH. Drippie is designed to be connected with smart contract automation services so that drips can
be executed automatically. However, Drippie is specifically designed to be separated from these services so that
trust assumptions are better compartmentalized.

Disclaimer : This security review does not guarantee against a hack. It is a snapshot in time of Optimism Drippie
according to the specific commit. Any modifications to the code will require a new security review.

3 Risk classification

Severity level Impact: High Impact: Medium Impact: Low
Likelihood: high Critical High Medium
Likelihood: medium High Medium Low
Likelihood: low Medium Low Low

3.1 Impact

• High - leads to a loss of a significant portion (>10%) of assets in the protocol, or significant harm to a majority
of users.

• Medium - global losses <10% or losses to only a subset of users, but still unacceptable.

• Low - losses will be annoying but bearable--applies to things like griefing attacks that can be easily repaired
or even gas inefficiencies.

3.2 Likelihood

• High - almost certain to happen, easy to perform, or not easy but highly incentivized

• Medium - only conditionally possible or incentivized, but still relatively likely

• Low - requires stars to align, or little-to-no incentive

3.3 Action required for severity levels

• Critical - Must fix as soon as possible (if already deployed)

• High - Must fix (before deployment if not already deployed)

• Medium - Should fix

• Low - Could fix

2

https://spearbit.com

4 Executive Summary

Over the course of 10 days in total, Optimism engaged with Spearbit to review Drippie. In this period of time a total
of 34 issues were found.

Summary

Project Name Drippie
Repository Drippie
Commit 2a7be367634f14773...
Type of Project L2, Automation
Audit Timeline Aug 8st - Aug 17th
Methods Manual Review, Mythril

Issues Found

Critical Risk 0
High Risk 0
Medium Risk 1
Low Risk 11
Gas Optimizations 5
Informational 17
Total Issues 34

3

https://www.optimism.io/
https://spearbit.com
https://github.com/ethereum-optimism/optimism
https://github.com/ethereum-optimism/optimism/tree/develop/packages/contracts-periphery/contracts/universal/drippie
https://github.com/ethereum-optimism/optimism/tree/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal

5 Findings

5.1 Medium Risk

5.1.1 Permitting Multiple Drip Calls Per Block

Severity: Medium Risk

Context: Drippie.sol#L266

Description: The inline comments correctly note that reentrancy is possible and permitted when
state.config.interval is 0. We are currently unaware of use cases where this is desirable.

Reentrancy is one risk, flashbot bundles are a similar risk where the drip may be called multiple times by the same
actor in a single block. A malicious actor may abuse this ability, especially if interval is misconfigured as 0 due to
JavaScript type coercion.

A reentrant call or flashbot bundle may be used to frontrun an owner attempting to archive a drip or attempting to
withdraw assets.

Recommendation: First, we recommend limiting drip calls to 1 per block.

Document the transaction order dependence (frontrunning) risk for owners wishing to archive a drip. Reasonable
drip intervals can be employed to prevent this attack.

If it is important to permit multiple calls to the same drip in a single block, we recommend making the behavior
opt-in rather than default if no state.config.interval specified.

+function create(string memory _name, DripConfig memory _config, bool allowMultiplePerBlock) external
onlyOwner {,!

-function create(string memory _name, DripConfig memory _config) external onlyOwner {
// Make sure this drip doesn't already exist. We *must* guarantee that no other function
// will ever set the status of a drip back to NONE after it's been created. This is why
// archival is a separate status.
require(

drips[_name].status == DripStatus.NONE,
"Drippie: drip with that name already exists"

);

+ require(
+ _config.interval > 0 || allowMultiplePerBlock,
+ "Drippie, explict opt-in for 0 interval"
+);

// We initialize this way because Solidity won't let us copy arrays into storage yet.
DripState storage state = drips[_name];
state.status = DripStatus.PAUSED;
state.config.interval = _config.interval;
state.config.dripcheck = _config.dripcheck;
state.config.checkparams = _config.checkparams;

// Solidity doesn't let us copy arrays into storage, so we push each array one by one.
for (uint256 i = 0; i < _config.actions.length; i++) {

state.config.actions.push(_config.actions[i]);
}

// Tell the world!
emit DripCreated(_name, _name, _config);

}

Optimism: Fixed in PR #3280.

Spearbit: Fixed.

4

https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/Drippie.sol#L266
https://github.com/ethereum-optimism/optimism/pull/3280/commits/d50ff1b46b70bb868b1596c17b514979ce3e800c

5.2 Low Risk

5.2.1 Version Bump to Latest

Severity: Low Risk

Context: Drippie.sol#L2, CheckBalanceHigh.sol#L2, CheckBalanceLow.sol#L2, CheckGelatoLow.sol#L2, Check-
True.sol#L2

Description: During the review, a new version of solidity was released with an important bugfix.

Recommendation: Move from 0.8.15 to 0.8.16

Optimism: Fixed here PR #3567.

Spearbit:

• Drippie solidity version has been updated to 0.8.16 in PR#3280

• CheckBalanceHigh.sol, CheckBalanceLow.sol, CheckGelatoLow.sol, CheckTrue.sol solidity version have
been updated to 0.8.16 in PR#3567

5.2.2 DOS from External Calls in Drippie.executable / Drippie.drip

Severity: Low Risk

Context: Drippie.sol#L233-L236, Drippie.sol#L284

Description: In both the executable and drip (which also calls executable) functions, the Drippie contract
interacts with some external contract via low-level calls.

The external call could revert or fail with an Out of Gas exception causing the entire drip to fail.

The severity is low beacuse in the case where a drip reverts due to a misconfigured or malicious dripcheck or
target, the drip can still be archived and a new one can be created by the owner.

Recommendation: The DOS vector is documented inline, consider elevating to @natspec and user docs.

Worth noting is that drips expect the DripAction.target to revert on failure and not fail silently. In other words, all
action targets MUST revert on failure, else unexpected behaviour between actions may occur.

5.2.3 Use call.value over transfer in withdrawETH

Severity: Low Risk

Context: AssetReceiver.sol#L89

Description: transfer is no longer recommended as a default due to unpredictable gas cost changes in future
evm hard forks (see here for more background.)

While useful to use transfer in some cases (such as sending to EOA or contract which does not process data
in the fallback or receiver functions), this particular contract does not benefit: withdrawETH is already owner gated
and is not at risk of reentrancy as owner already has permission to drain the contract’s ether in a single call should
they choose.

Recommendation: Use call.value over transfer in withdrawETH.

Spearbit: Note that the implementation in PR#3280 has moved from transfer to a low-level call but has still
some issues.

The success value returned from the call is never used, returned as function returned variable or checked at
all. Because of this reason, the current implementation of withdrawETH allow the function to "fail silently" when the
internal low-level call revert and return success = false. In this case, the ETH has not been transferred to the
recipient, but because the "main" transaction does not revert the WithdrewETH is still emitted, and the caller will
think that the ETH has been correctly transferred.

5

https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/Drippie.sol#L2
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/dripchecks/CheckBalanceHigh.sol#L2
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/dripchecks/CheckBalanceLow.sol#L2
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/dripchecks/CheckGelatoLow.sol#L2
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/dripchecks/CheckTrue.sol#L2
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/dripchecks/CheckTrue.sol#L2
https://blog.soliditylang.org/2022/08/08/solidity-0.8.16-release-announcement/
https://github.com/ethereum-optimism/optimism/pull/3567
https://github.com/ethereum-optimism/optimism/pull/3280
https://github.com/ethereum-optimism/optimism/pull/3567
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/Drippie.sol#L233-L236
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/Drippie.sol#L284
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/Drippie.sol#L279
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/AssetReceiver.sol#L89
https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/
https://github.com/ethereum-optimism/optimism/pull/3280

Optimism: We agree and intend to fix this, though not immediately. This is OK as it’s an onlyOwner gated function
which we expect to use very infrequently.

Spearbit: Acknowledged.

5.2.4 Input Validation Checks for Drippie.create

Severity: Low Risk

Context: Drippie.sol#L126-L149

Description: Drippie.create does not validate input potentially leading to unintended results.

The function should check:

• _name is not an empty string to avoid creating drip that would be able to read on frontend UI.

• _config.dripcheck should not be address(0) otherwise executable will always revert.

• _config.actions.length should be at least one (_config.actions.length > 0) to prevent creating drips
that do nothing when executed.

• DripAction.target should not be address(0) to prevent burning ETH or interacting with the zero address
during drip’s execution.

Recommendation: Consider implementing the suggested checks to prevent misconfigured drips.

DripAction.data and DripConfig.params are not type checked, however, there is no simple fix without sacrificing
flexibility. We recommend surfacing a caution in user docs.

5.2.5 Ownership Initialization and Transfer Safety on Owned.setOwner

Severity: Low Risk

Context: Drippie.sol#L116

Description: Consider the following scenarios.

• Scenario 1

Drippie allows the owner to be both initialized and set to address(0). If this scenario happens nobody will be able
to manage the Drippie contract, thus preventing any of the following operations:

• Creating a new drip

• Updating a drip’s status (pausing, activating or archiving a drip)

If set to the zero address, all the onlyOwner operations in AssetReceiver and Transactor will be uncallable.

This scenario where the owner can be set to address(0) can occur when address(0) is passed to the construc-
tor or setOwner.

• Scenario 2

owner may be set to address(this). Given the static nature of DripAction.target and DripAction.data there
is no benefit of setting owner to address(this), and all instances can be assumed to have been done so in error.

Recommendation: Add a check for address(0) and address(this) in both the constructor and setOwner.

For added safety, require the new owner to accept the ownership before ownership is transferred.

6

https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/Drippie.sol#L126-L149
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/Drippie.sol#L116

5.2.6 Unchecked Return and Handling of Non-standard Tokens in AssetReceiver

Severity: Low Risk

Context: AssetReceiver.sol#L116

Description: The current AssetReceiver contract implement "direct" ETH and ERC20 token transfers, but does
not cover edge cases like non-standard ERC20 tokens that do not:

• revert on failed transfers

• adhere to ERC20 interface (i.e. no return value)

An ERC20 token that does not revert on failure would cause the WithdrewERC20 event to emit even though no
transfer took place.

An ERC20 token that does not have a return value will revert even if the call would have otherwise been successful.

Solmate libraries already used inside the project offer a utility library called SafeTransferLib.sol which covers such
edge cases.

Be aware of the developer comments in the natspec:

/// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination
of the free memory pointer. /// @dev Note that none of the functions in this library check that a token
has code at all! That responsibility is delegated to the caller.

Recommendation: Consider integrating Solmate SafeTransferLib inside AssetReceiver to cover edge cases.

5.2.7 AssetReceiver Allows Burning ETH, ERC20 and ERC721 Tokens

Severity: Low Risk

Context: AssetReceiver.sol#L89, AssetReceiver.sol#L116, AssetReceiver.sol#L133

Description: AssetReceiver contains functions that allow the owner of the contract to withdraw ETH, ERC20 and
ERC721 tokens.

Those functions allow specifying the receiver address of ETH, ERC20 and ERC721 tokens but they do not check
that the receiver address is not address(0).

By not doing so, those functions allow to:

• Burn ETH if sent to address(0).

• Burn ERC20 tokens if sent to address(0) and the ERC20 _asset allow tokens to be burned via transfer
(For example, Solmate’s ERC20 allow that, OpenZeppelin instead will revert if the recipient is address(0)).

• Burn ERC721 tokens if sent to address(0) and the ERC721 _asset allow tokens to be burned via trans-
ferFrom (For example, both Solmate and OpenZeppelin implementations prevent to send the _id to the
address(0) but you don’t know if that is still true about custom ERC721 contract that does not use those
libraries).

Recommendation: Add a check on all those functions to revert if _to is address(0).

7

https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/AssetReceiver.sol#L116
https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/AssetReceiver.sol#L89
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/AssetReceiver.sol#L116
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/AssetReceiver.sol#L133

5.2.8 AssetReceiver Not Implementing onERC721Received Callback Required by safeTransferFrom.

Severity: Low Risk

Context: AssetReceiver.sol

Description: AssetReceiver contains the function withdrawERC721 that allow the owner to withdraw ERC721
tokens.

As stated in the EIP-721, the safeTransferFrom (used by the sender to transfer ERC721 tokens to the AssetRe-
ceiver) will revert if the target contract (AssetReceiver in this case) is not implementing onERC721Received and
returning the expected value bytes4(keccak256("onERC721Received(address,address,uint256,bytes)")).

Recommendation: Add the onERC721Received callback function in the AssetReceiver contract to be able to
receive ERC721 tokens.

5.2.9 Both Transactor.CALL and Transactor.DELEGATECALL Do Not Emit Events

Severity: Low Risk

Context: Transactor.sol#L27-L34, Transactor.sol#L46-L53

Description: Transactor contains a "general purpose" DELEGATECALL and CALL function that allow the owner to
execute a delegatecall and call toward a target address passing an arbitrary payload.

Both of those functions are executing delegatecall and call without emitting any events. Because of the general-
purpose nature of these function, it would be considered a good security measure to emit events to track the
function’s usage. Those events could be then used to monitor and track usage by external monitoring services.

Recommendation: Consider adding event emission to both delegatecal and call functions.

5.2.10 Both Transactor.CALL and Transactor.DELEGATECALL Do Not Check the Result of the Execution

Severity: Low Risk

Context: Transactor.sol#L27-L34, Transactor.sol#L46-L53

Description: The Transactor contract contains a "general purpose" DELEGATECALL and CALL function that allow
the owner to execute a delegatecall and call toward a target address passing an arbitrary payload.

Both functions return the delegatecall and call result back to the caller without checking whether execution was
successful or not.

By not implementing such check, the transaction could fail silently. Another side effect is that the ETH sent along
with the execution (both functions are payable) would remain in the Drippie contract and not transferred to the
_target.

Test example showcasing the issue:

contract Useless {
// A contract that have no functions
// No fallback functions
// Will not accept ETH (only from selfdestruct/coinbase)

}

function test_transactorCALL() public {
Useless useless = new Useless();
bool success;

vm.deal(deployer, 3 ether);
vm.deal(address(drippie), 0 ether);
vm.deal(address(useless), 0 ether);

vm.prank(deployer);
// send 1 ether via `call` to a contract that cannot receive them

8

https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/AssetReceiver.sol
https://eips.ethereum.org/EIPS/eip-721
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/Transactor.sol#L27-L34
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/Transactor.sol#L46-L53
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/Transactor.sol#L27-L34
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/Transactor.sol#L46-L53

(success,) = drippie.CALL{value: 1 ether}(address(useless), "", 100000, 1 ether);
assertEq(success, false);

vm.prank(deployer);
// Perform a `call` to a not existing target's function
(success,) = drippie.CALL{value: 1 ether}(address(useless),
abi.encodeWithSignature("notExistingFn()"), 100000, 1 ether);,!

assertEq(success, false);

assertEq(deployer.balance, 1 ether);
assertEq(address(drippie).balance, 2 ether);
assertEq(address(useless).balance, 0);

}

function test_transactorDELEGATECALL() public {
Useless useless = new Useless();
bool success;

vm.deal(deployer, 3 ether);
vm.deal(address(drippie), 0 ether);
vm.deal(address(useless), 0 ether);

vm.prank(deployer);
// send 1 ether via `delegatecall` to a contract that cannot receive them
(success,) = drippie.DELEGATECALL{value: 1 ether}(address(useless), "", 100000);
assertEq(success, false);

vm.prank(deployer);
// Perform a `delegatecall` to a not existing target's function
(success,) = drippie.DELEGATECALL{value: 1 ether}(address(useless),
abi.encodeWithSignature("notExistingFn()"), 100000);,!

assertEq(success, false);

assertEq(deployer.balance, 1 ether);
assertEq(address(drippie).balance, 2 ether);
assertEq(address(useless).balance, 0);

}

Recommendation: Consider adding a check on both functions to cause the transaction to revert in case the
execution of delegatecall or call returns success == false.

5.2.11 Transactor.DELEGATECALL Data Overwrite and selfdestruct Risks

Severity: Low Risk

Context: Transactor.sol#L46-L53

Description: The Transactor contract contains a "general purpose" DELEGATECALL function that allow the owner
to execute a delegatecall toward a target address passing an arbitrary payload.

Consider the following scenarios:

• Scenario 1

A malicious target contract could selfdestruct the Transactor contract and as a consequence the contract that
is inheriting from Transactor.

Test example showcasing the issue:

9

https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/Transactor.sol#L46-L53

contract SelfDestroyer {
function destroy(address receiver) external {

selfdestruct(payable(receiver));
}

}

function test_canOwnerSelftDestructDrippie() public {
// Assert that Drippie exist
assertStatus(DEFAULT_DRIP_NAME, Drippie.DripStatus.PAUSED);
assertGt(getContractSize(address(drippie)), 0);

// set it to active
vm.prank(deployer);
drippie.status(DEFAULT_DRIP_NAME, Drippie.DripStatus.ACTIVE);
assertStatus(DEFAULT_DRIP_NAME, Drippie.DripStatus.ACTIVE);

// fund the drippie with 1 ETH
vm.deal(address(drippie), 1 ether);

uint256 deployerBalanceBefore = deployer.balance;
uint256 drippieBalanceBefore = address(drippie).balance;

// deploy the destroyer
SelfDestroyer selfDestroyer = new SelfDestroyer();

vm.prank(deployer);
drippie.DELEGATECALL(address(selfDestroyer), abi.encodeWithSignature("destroy(address)", deployer),
gasleft());,!

uint256 deployerBalanceAfter = deployer.balance;
uint256 drippieBalanceAfter = address(drippie).balance;

// assert that the deployer has received the balance that was present in Drippie
assertEq(deployerBalanceAfter, deployerBalanceBefore + drippieBalanceBefore);
assertEq(drippieBalanceAfter, 0);

// Weird things happens with forge
// Because we are in the same block the code of the contract is still > 0 so
// Cannot use assertEq(getContractSize(address(drippie)), 0);
// Known forge issue
// 1) Forge resets storage var to 0 after self-destruct (before tx ends) 2654 ->
https://github.com/foundry-rs/foundry/issues/2654,!

// 2) selfdestruct has no effect in test 1543 -> https://github.com/foundry-rs/foundry/issues/1543

assertStatus(DEFAULT_DRIP_NAME, Drippie.DripStatus.PAUSED);

}

• Scenario 2

The delegatecall allows the owner to intentionally, or accidentally, overwrite the content of the drips mapping.
By being able to modify the drips mapping, a malicious user would be able to execute a series of actions like:

Changing drip’s status:

• Activating an archived drip

• Deleting a drip by changing the status to NONE (this allows the owner to override entirely the drip by calling
again create)

• Switching an active/paused drip to paused/active

10

• etc..

Change drip’s interval:

• Prevent a drip from being executed any more by setting interval to a very high value

• Allow a drip to be executed more frequently by lowering the interval value

• Enable reentrancy by setting interval to 0

Change drip’s actions:

• Override an action to send drip’s contract balance to an arbitrary address

• etc..

Test example showcasing the issue:

contract ChangeDrip {
address public owner;
mapping(string => Drippie.DripState) public drips;

function someInnocentFunction() external {
drips["FUND_BRIDGE_WALLET"].config.actions[0] = Drippie.DripAction({

target: payable(address(1024)),
data: new bytes(0),
value: 1 ether

});
}

}

11

function test_canDELEGATECALLAllowReplaceAction() public {
vm.deal(address(drippie), 10 ether);
vm.deal(address(attacker), 0 ether);

// Create an action with name "FUND_BRIDGE_WALLET" that have the function
// To fund a wallet
vm.startPrank(deployer);
string memory fundBridgeWalletName = "FUND_BRIDGE_WALLET";
Drippie.DripAction[] memory actions = new Drippie.DripAction[](1);

// The first action will send Bob 1 ether
actions[0] = Drippie.DripAction({

target: payable(address(alice)),
data: new bytes(0),
value: 1 ether

});
Drippie.DripConfig memory config = createConfig(100, IDripCheck(address(checkTrue)), new bytes(0),
actions);,!

drippie.create(fundBridgeWalletName, config);
drippie.status(fundBridgeWalletName, Drippie.DripStatus.ACTIVE);
vm.stopPrank();

// Deploy the malicius contract
vm.prank(attacker);
ChangeDrip changeDripContract = new ChangeDrip();

// make the owner of drippie call via DELEGATECALL an innocentfunction of the exploiter contract
vm.prank(deployer);
drippie.DELEGATECALL(address(changeDripContract),
abi.encodeWithSignature("someInnocentFunction()"), 1000000);,!

// Now the drip action should have changed, anyone can execute it and funds would be sent to
// the attacker and not to the bridge wallet
drippie.drip(fundBridgeWalletName);

// Assert we have drained Drippie
assertEq(attacker.balance, 1 ether);
assertEq(address(drippie).balance, 9 ether);

}

• Scenario 3

Calling a malicious contract or accidentally calling a contract which does not account for Drippie’s storage layout
can result in owner being overwritten.

Test example showcasing the issue:

contract GainOwnership {
address public owner;

function someInnocentFunction() external {
owner = address(1024);

}
}

12

function test_canDELEGATECALLAllowOwnerLoseOwnership() public {
vm.deal(address(drippie), 10 ether);
vm.deal(address(attacker), 0 ether);

// Deploy the malicius contract
vm.prank(attacker);
GainOwnership gainOwnershipContract = new GainOwnership();

// make the owner of drippie call via DELEGATECALL an innocentfunction of the exploiter contract
vm.prank(deployer);
drippie.DELEGATECALL(address(gainOwnershipContract),
abi.encodeWithSignature("someInnocentFunction()"), 1000000);,!

// Assert that the attacker has gained onwership
assertEq(drippie.owner(), attacker);

// Steal all the funds
vm.prank(attacker);
drippie.withdrawETH(payable(attacker));

// Assert we have drained Drippie
assertEq(attacker.balance, 10 ether);
assertEq(address(drippie).balance, 0 ether);

}

Recommendation:

• On all Scenarios

Document and instruct users to pay attention to each contract that Transactor interacts with when DELEGATECALL
is called to prevent situations like this.

If Drippie does not need to allow the owner to execute general purpose delegatecall consider removing the
Transactor dependency from the inheritance chain.

Be particularly cautious calling out to upgradeable contracts/proxies.

• Scenario 1

Deploying with create2 allows for recovery of any tokens managed by the Drippie contract in the event it is
accidentally selfdestructed by redeploying to the same address.

• Scenario 3

A postcondition can also assist in protecting accidental owner overwriting:

function DELEGATECALL(
address _target,
bytes memory _data,
uint256 _gas

) external payable onlyOwner returns (bool, bytes memory) {
+ address prevOwner = owner;

// slither-disable-next-line controlled-delegatecall
- return _target.delegatecall{ gas: _gas }(_data);
+ (bool success, bytes memory res) = _target.delegatecall{ gas: _gas }(_data);
+ require(prevOwner == owner, "accidential onwer overwrite");
+ return (success, res);
}

13

5.3 Gas Optimization

5.3.1 Use calldata over memory

Severity: Gas Optimization

Context: Drippie.sol#L126, Drippie.sol#L160, Drippie.sol#L213, Drippie.sol#L252

Description: Some gas savings if function arguments are passed as calldata instead of memory.

Recommendation: Use calldata in these instances.

Optimism: Addressed in PR#3280.

Spearbit: Fixed.

5.3.2 Avoid String names in Events and Mapping Key

Severity: Gas Optimization

Context: Drippie.sol#L111

Description: Drip events emit an indexed nameref and the name as a string. These strings must be passed into
every drip call adding to gas costs for larger strings.

Recommendation: For off chain uses, i.e. user interface display, the names are useful. A more gas efficient
approach would be to use uint256 or bytes32 for drip mapping keys.

The string names may still be stored in DripState for off chain reading, but gas would be saved in not logging
names each time a drip is called and not needing to incur the variable gas costs longer names introduce.

5.3.3 Avoid Extra sloads on Drippie.status

Severity: Gas Optimization

Context: Drippie.sol#L160

Description: Information for emitting event can be taken from calldata instead of reading from storage.

Can skip repeat drips[_name].status reads from storage.

Recommendation: Consider implementing the following fixes.

function status(string memory _name, DripStatus _status) external onlyOwner {

...snip...

// If we made it here then we can safely update the status.
drips[_name].status = _status;

+ emit DripStatusUpdated(_name, _name, _status);
- emit DripStatusUpdated(_name, _name, drips[_name].status);

}

and

function status(string memory _name, DripStatus _status) external onlyOwner {

...snip...

+ DripStatus currentStatus = drips[_name].status;

// Make sure the drip in question actually exists. Not strictly necessary but there doesn't
// seem to be any clear reason why you would want to do this, and it may save some gas in
// the case of a front-end bug.
require(

14

https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/Drippie.sol#L126
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/Drippie.sol#L160
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/Drippie.sol#L213
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/Drippie.sol#L252
https://github.com/ethereum-optimism/optimism/pull/3280/commits/b006381716ef75eb88ad00bd520fe73b2f408638
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/Drippie.sol#L111
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/Drippie.sol#L111
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/Drippie.sol#L57
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/Drippie.sol#L160

+ currentStatus != DripStatus.NONE,
- drips[_name].status != DripStatus.NONE,

"Drippie: drip with that name does not exist"
);

// Once a drip has been archived, it cannot be un-archived. This is, after all, the entire
// point of archiving a drip.
require(

+ currentStatus != DripStatus.ARCHIVED,
- drips[_name].status != DripStatus.ARCHIVED,

"Drippie: drip with that name has been archived"
);

// Although not strictly necessary, we make sure that the status here is actually changing.
// This may save the client some gas if there's a front-end bug and the user accidentally
// tries to "change" the status to the same value as before.
require(

+ currentStatus != _status,
- drips[_name].status != _status,

"Drippie: cannot set drip status to same status as before"
);

// If the user is trying to archive this drip, make sure the drip has been paused. We do
// not allow users to archive active drips so that the effects of this action are more
// abundantly clear.
if (_status == DripStatus.ARCHIVED) {

require(
+ currentStatus == DripStatus.PAUSED,
- drips[_name].status == DripStatus.PAUSED,

"Drippie: drip must be paused to be archived"
);

}

...snip...
}

Optimism: Addressed in PR#3280.

Spearbit: Fixed.

5.3.4 Use Custom Errors Instead of Strings

Severity: Gas Optimization

Context: Drippie.sol

Description: To save some gas the use of custom errors leads to cheaper deploy time cost and run time cost.
The run time cost is only relevant when the revert condition is met.

Recommendation: Consider using custom errors instead of revert strings.

Optimism: Chose not to implement.

Spearbit: Acknowledged.

15

https://github.com/ethereum-optimism/optimism/pull/3280/commits/9e4943665f88dac0ab21374192d1d7b9fdbba402
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/Drippie.sol

5.3.5 Increment In The For Loop Post Condition In An Unchecked Block

Severity: Gas Optimization

Context: Drippie.sol#L143, Drippie.sol#L273

Description: This is only relevant if you are using the default solidity checked arithmetic. i++ involves checked
arithmetic, which is not required. This is because the value of i is always strictly less than length <= 2**256 - 1.
Therefore, the theoretical maximum value of i to enter the for-loop body is 2**256 - 2. This means that the i++
in the for loop can never overflow. Regardless, the overflow checks are performed by the compiler.

Unfortunately, the Solidity optimizer is not smart enough to detect this and remove the checks. One can manually
do this by:

for (uint i = 0; i < length;) {
// do something that doesn't change the value of i
unchecked {

++i;
}

}

Recommendation: Consider doing the increment in the for loop post condition in an unchecked block.

Optimism: Chose not to implement.

Spearbit: Acknowledged.

5.4 Informational

5.4.1 DripState.count Location and Use

Severity: Informational

Context: Drippie.sol#L61, Drippie.sol#L300

Description: DripState.count is recorded and never used within the Drippie or IDripCheck contracts.

DripState.count is also incremented after all external calls, inconsistent with Checks, Effects, Interactions con-
vention.

Recommendation: Consider implementing the following recommendations.

Recommendation 1: increment DripState.count before external calls.

Recommendation 2: consider removing DripState.count entirely if it is not used on chain.

Recommendation 3: if DripState.count is not removed, consider whether the information is useful in any future
DripChecks.

Optimism: Recommendation 1 implemented in PR#3280.

Spearbit: Recommendation 1 implemented.

16

https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/Drippie.sol#L143
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/Drippie.sol#L273
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/Drippie.sol#L61
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/Drippie.sol#L300
https://github.com/ethereum-optimism/optimism/pull/3280/commits/1ef3162fa980d44d22a50d5c446522978c6a45a4

5.4.2 Type Checking Foregone on DripCheck

Severity: Informational

Context: IDripCheck.sol#L4

Description: Passing params as bytes makes for a flexible DripCheck, however, type checking is lost.

Recommendation: A helper may be added to DripChecks for users to confirm properly constructed params bytes
array prior to creating a drip.

contract CheckBalanceLow is IDripCheck {
event _EventToExposeStructInABI__Params(Params params);
struct Params {

address target;
uint256 threshold;

}

function check(bytes memory _params) external view returns (bool) {
Params memory params = abi.decode(_params, (Params));

// Check target ETH balance is below threshold.
return params.target.balance < params.threshold;

}

+ function encodeCheck(address target, uint256 threshold)
+ external
+ view
+ returns (bytes memory)
+ {
+ Params memory toEncode = Params(target, threshold);
+ return abi.encode(toEncode);
+ }
}

5.4.3 Confirm Blind ERC721 Transfers are Intended

Severity: Informational

Context: AssetReceiver.sol#L133

Description: AssetReceiver uses transferFrom instead of safeTransferFrom.

The callback on safeTransferFrom often poses a reentrancy risk but in this case the function is restricted to
onlyOwner.

Recommendation: Consider added safety of safeTransferFrom when sending to contracts.

5.4.4 Code Contains Empty Blocks

Severity: Informational

Context: Transactor.sol#L14, AssetReceiver.sol#L63

Description: It’s best practice that when there is an empty block, to add a comment in the block explaining why
it’s empty. While not technically errors, they can cause confusion when reading code.

Recommendation: Consider adding /* Comment on why */ to the empty blocks.

Optimism: Chose not to implement.

Spearbit: Acknowledged.

17

https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/IDripCheck.sol#L4
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/AssetReceiver.sol#L133
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/Transactor.sol#L14
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/AssetReceiver.sol#L63

5.4.5 Code Structure Deviates From Best-Practice

Severity: Informational

Context: CheckGelatoLow.sol#L15-L20, CheckBalanceLow.sol#L11-L15, CheckBalanceHigh.sol#L11-L15,
Drippie.sol#L100-L111

Description: The best-practice layout for a contract should follow this order:

• State variables.

• Events.

• Modifiers.

• Constructor.

• Functions.

Function ordering helps readers identify which functions they can call and find constructor and fallback functions
easier. Functions should be grouped according to their visibility and ordered as: constructor, receive function (if ex-
ists), fallback function (if exists), external, public, internal, private. Some constructs deviate from this recommended
best-practice: structs and mappings after events.

Recommendation: Consider adopting recommended best-practice for code structure and layout.

Optimism: Fixed in PR#3280.

Spearbit: Fixed.

5.4.6 Missing or Incomplete NatSpec

Severity: Informational

Context: AssetReceiver.sol#L19, CheckTrue.sol, CheckGelatoLow.sol, CheckBalanceLow.sol, CheckBalance-
High.sol

Description: Some functions are missing @notice/@dev NatSpec comments for the function, @param for
all/some of their parameters and @return for return values. Given that NatSpec is an important part of code
documentation, this affects code comprehension, auditability and usability.

Recommendation: Consider adding in full NatSpec comments for all functions to have complete code documen-
tation for future use.

Optimism: Fixed in PR#3280.

Spearbit: Fixed.

5.4.7 Checking Boolean Against Boolean

Severity: Informational

Context: Drippie.sol#L256-L259

Description: executable returns a boolean in which case the comparison to true is unnecessary.

executable also reverts if any precondition check fails in which case false will never be returned.

Recommendation: If important to check, change require to assert to facilitate invariant checking (using tools
like Mythril):

18

https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/dripchecks/CheckGelatoLow.sol#L15-L20
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/dripchecks/CheckBalanceLow.sol#L11-L15
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/dripchecks/CheckBalanceHigh.sol#L11-L15
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/Drippie.sol#L100-L111
https://github.com/ethereum-optimism/optimism/pull/3280
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/AssetReceiver.sol#L19
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/dripchecks/CheckTrue.sol
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/dripchecks/CheckGelatoLow.sol
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/dripchecks/CheckBalanceLow.sol
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/dripchecks/CheckBalanceHigh.sol
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/dripchecks/CheckBalanceHigh.sol
https://github.com/ethereum-optimism/optimism/pull/3280
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/Drippie.sol#L256-L259

function drip(string memory _name) external {
DripState storage state = drips[_name];

// Make sure the drip can be executed.
- require(
+ assert(
- executable(_name) == true,
+ executable(_name)

"Drippie: drip cannot be executed at this time, try again later"
);

...snip...

}

Or, remove the extra check entirely:

function drip(string memory _name) external {
DripState storage state = drips[_name];

// Make sure the drip can be executed.
- require(
- executable(_name) == true,
- "Drippie: drip cannot be executed at this time, try again later"
-);
+ executable(_name)

...snip...

}

Optimism: The recommendation has been implemented in the PR#3280

Spearbit: Fixed.

5.4.8 Drippie.executable Never Returns false Only true or Reverts

Severity: Informational

Context: Drippie.sol#L206-L240

Description: The executable implemented in the Drippie contract has the following signature
executable(string memory _name) public view returns (bool).

From the signature and the natspec documentation @return True if the drip is executable, false other-
wise. Without reading the code, a user/developer would expect that the function returns true if all the checks
passes otherwise false but in reality the function will always return true or revert.

Because of this behavior, a reverting drip that do not pass the requirements inside executable will never revert
with the message present in the following code executed by the drip function

require(
executable(_name) == true,
"Drippie: drip cannot be executed at this time, try again later"

);

Recommendation: If the current implementation is the expected behavior, consider updating the natspec of the
function to reflect the function’s implementation.

Optimism: The recommendation has been implemented in the PR#3280.

Spearbit: Fixed.

19

https://github.com/ethereum-optimism/optimism/pull/3280
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/Drippie.sol#L206-L240
https://github.com/ethereum-optimism/optimism/pull/3280

5.4.9 Drippie Use Case Notes

Severity: Informational

Description: Drippie intends to support use cases outside of the initial hot EOA top-up use case demonstrated by
Optimism. To further clarify, we’ve noted that drips support:

• Sending eth

• External function calls with fixed params

• Preconditions

Examples include, conditionally transferring eth or tokens. Calling an admin function iff preconditions are met.

Drips do not support:

• Updating the drip contract storage

• Altering params

• Postconditions

Examples include, vesting contracts or executing Uniswap swaps based on recent moving averages (which are not
without their own risks). Where dynamic params or internal accounting is needed, a separate contract needs to be
paired with the drip.

Recommendation: No changes needed. Documenting only.

5.4.10 Augment Documentation for dripcheck.check Indicating Precondition Check Only Performed

Severity: Informational

Context: Drippie.sol#L252-L302

Description: Before executing the whole batch of actions the drip function call executable that check if the drip
can be executed. Inside executable an external contract is called by this instruction

require(
state.config.dripcheck.check(state.config.checkparams),
"Drippie: dripcheck failed so drip is not yet ready to be triggered"

);

Optimism provided some examples like checking if a target balance is below a specific threshold or above that
threshold, but in general, the dripcheck.check invocation could perform any kind of checks.

The important part that should be clear in the natspec documentation of the drip function is that that specific
check is performed only once before the execution of the bulk of actions.

Recommendation: Consider updating the natspec documentation of the drip function, making explicit that the
check done by dripcheck.checkis performed only before executing the batch of actions.

Optimism: The recommendation has been implemented in the PR#3280.

Spearbit: Fixed.

20

https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/Drippie.sol#L252-L302
https://github.com/ethereum-optimism/optimism/pull/3280

5.4.11 Considerations on the drip state.last and state.config.interval values

Severity: Informational

Context: Drippie.sol#L227-L230

Description: When the drip function is called by an external actor, the executable is executed to check if the
drip meets all the needed requirements to be executed.

The only check that is done regarding the drip state.last and state.config.interval is this

require(
state.last + state.config.interval <= block.timestamp,
"Drippie: drip interval has not elapsed since last drip"

);

The state.time is never really initialized when the create function is called, this means that it will be automatically
initialized with the default value of the uint256 type: 0.

• Consideration 1: Drips could be executed as soon as created

Depending on the value set to state.config.interval the executable’s logic implies that as soon as a drip is
created, the drip can be immediately (even in the same transaction) executed via the drip function.

• Consideration 2: A very high value for interval could make the drip never executable

block.timestamp represents the number of seconds that passed since Unix Time (1970-01-01T00:00:00Z). When
the owner of the Drippie want to create a "one shot" drip that can be executed immediately after creation but only
once (even if the owner forgets to set the drip’s status to ARCHIVED) he/she should be aware that the max value
that he/she can use for the interval is at max block.timestamp.

This mean that the second time the drip can be executed is after block.timestamp seconds have been passed.
If, for example, the owner create right now a drip with interval = block.timestamp it means that after the first
execution the same drip could be executed after ~52 years (~2022-1970).

Recommendation: At minimum, include documentation to highlight that drips could be immediately callable after
creation, depending on the interval value. Consider the mentioned limitation of the interval max value if you
want to have "one shot" actions that can be triggered as soon as created.

Consider adding an additional mechanism to manage the scenario where a drip should be executed only after a
specific timestamp is passed.

5.4.12 Support ERC1155 in AssetReceiver

Severity: Informational

Context: AssetReceiver.sol#L128

Description: AssetReceiver support ERC20 and ERC721 interfaces but not ERC1155.

Recommendation: For generalized use cases, considering adding support for ERC1155.

21

https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/Drippie.sol#L227-L230
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/AssetReceiver.sol#L128

5.4.13 Reorder DripStatus Enum for Clarity

Severity: Informational

Context: Drippie.sol#L30-L31

Description: The current implementation of Drippie contract has the following enum type:

enum DripStatus {
NONE, // uint8(0)
ACTIVE,
PAUSED,
ARCHIVED

}

When a drip is created via the create function, its status is initialized to PAUSED (equal to uint8(2)) and when it
gets activated its status is changed to ACTIVE (equal to uint8(1))

So, the status change from 0 (NONE) to 2 (PAUSED) to 1 (ACTIVE). Switching the order inside the enum DripStatus
definition between PAUSED and ACTIVE would make it more clean and easier to understand.

Recommendation: Consider switching the order inside the enum DripStatus definition between PAUSED and
ACTIVE would make it more clean and easier to understand.

Optimism: The recommendation has been implemented in the PR#3280.

Spearbit: Fixed.

5.4.14 _gas is Unneeded as Transactor.CALL and Transactor.DELEGATECALL Function Argument

Severity: Informational

Context: Transactor.sol#L30, Transactor.sol#L49

Description: The caller (i.e. contract owner) can control desired amount of gas at the transaction level.

Recommendation: Remove the _gas argument.

Optimism: Addressed in PR#3280.

Spearbit: Fixed.

5.4.15 Licensing Conflict on Inherited Dependencies

Severity: Informational

Context: Drippie.sol#L1, AssetReceiver.sol#L1, Transactor.sol#L1

Description: Solmate contracts are AGPL Licensed which is incompatible with the MIT License of Drippie related
contracts.

Recommendation: Strict interpretations of AGPL require inheriting contracts to be released under AGPL.

Possible remediations include:

• Altering Drippie license

• Removing AGPL dependencies, using alternate library

Optimism: Spearbit v7 is now MIT licensed.

Spearbit: Solmate v7 license have been updated to MIT.

Note: The project has been audited with Solmate v6 (that has been audited) and not with Solmate v7 (which at the
current time has not been audited).

22

https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/Drippie.sol#L30-L31
https://github.com/ethereum-optimism/optimism/pull/3280
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/Transactor.sol#L30
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/Transactor.sol#L49
https://github.com/ethereum-optimism/optimism/pull/3280/commits/9b8b28bba39e4ccde32942fa112193a3556ba0c0
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/Drippie.sol#L1
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/AssetReceiver.sol#L1
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/Transactor.sol#L1
https://github.com/transmissions11/solmate/blob/v7/README.md
https://github.com/transmissions11/solmate/blob/main/audits/v6-Fixed-Point-Solutions.pdf

5.4.16 Rename Functions for Clarity

Severity: Informational

Context: Drippie.sol#L160

Description:

status The status(string memory _name, DripStatus _status) function allows the owner to update the status
of a drip.

The purpose of the function, based on the name, is not obvious at first sight and could confuse a user into believing
that it’s a view function to retrieve the status of a drip instead of mutating its status.

executable

The executable(string memory _name) public view returns (bool) function returns true if the drip with
name _name can be executed.

Recommendation: Consider changing status to setStatus/updateStatus.

Consider changing executable to isExecutable.

5.4.17 Owner Has Permission to Drain Value from Drippie Contract

Severity: Informational

Context: Scenario 1: Drippie.sol#L126 Scenario 2: Drippie.sol#L19 Scenario 3: Transactor.sol#L27-L34

Description: Consider the following scenarios.

• Scenario 1

Owner may create arbitrary drips, including a drip to send all funds to themselves.

• Scenario 2

AssetReceiver permits owner to withdraw ETH, ERC20 tokens, and ERC721 tokens.

• Scenario 3

Owner may execute arbitrary calls.

Transactor.CALL function is a function that allows the owner of the contract to execute a "general purpose" low-
level call.

function CALL(
address _target,
bytes memory _data,
uint256 _gas,
uint256 _value

) external payable onlyOwner returns (bool, bytes memory) {
return _target.call{ gas: _gas, value: _value }(_data);

}

The function will transfer _value ETH present in the contract balance to the _target address. The function is also
payable and this mean that the owner can send along with the call some funds.

Test example showcasing the issue:

23

https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/Drippie.sol#L160
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/Drippie.sol#L126
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/drippie/Drippie.sol#L19
https://github.com/ethereum-optimism/optimism/blob/2a7be367634f147736f960eb2f38a77291cdfcad/packages/contracts-periphery/contracts/universal/Transactor.sol#L27-L34

function test_transactorCALLAllowOwnerToDrainDrippieContract() public {
bool success;

vm.deal(deployer, 0 ether);
vm.deal(bob, 0 ether);
vm.deal(address(drippie), 1 ether);

vm.prank(deployer);
// send 1 ether via `call` to a contract that cannot receive them
(success,) = drippie.CALL{value: 0 ether}(bob, "", 100000, 1 ether);
assertEq(success, true);

assertEq(address(drippie).balance, 0 ether);
assertEq(bob.balance, 1 ether);

}

Recommendation: These permissions appear intentional. Be sure to document for Drippie users and suggest
they take any necessary precautions (multisigs, etc.).

Consider whether arbitrary calls are necessary and, if not, remove AssetReceiver (and inherit directly from
Owned). Arbitrary calls can already be made by the owner creating a new drip, think of arbitrary calls as "one shot
drips". Setting a very large interval makes it easy to archive a one shot drip after use.

What would be lost by removing AssetReceiver as a dependency is arbitrary state updates, from the delegate-
call, and the onERC721Received we recommended adding to AssetReceiver in another ticket.

24

	About Spearbit
	Introduction
	Risk classification
	Impact
	Likelihood
	Action required for severity levels

	Executive Summary
	Findings
	Medium Risk
	Permitting Multiple Drip Calls Per Block

	Low Risk
	Version Bump to Latest
	DOS from External Calls in Drippie.executable / Drippie.drip
	Use call.value over transfer in withdrawETH
	Input Validation Checks for Drippie.create
	Ownership Initialization and Transfer Safety on Owned.setOwner
	Unchecked Return and Handling of Non-standard Tokens in AssetReceiver
	AssetReceiver Allows Burning ETH, ERC20 and ERC721 Tokens
	AssetReceiver Not Implementing onERC721Received Callback Required by safeTransferFrom.
	Both Transactor.CALL and Transactor.DELEGATECALL Do Not Emit Events
	Both Transactor.CALL and Transactor.DELEGATECALL Do Not Check the Result of the Execution
	Transactor.DELEGATECALL Data Overwrite and selfdestruct Risks

	Gas Optimization
	Use calldata over memory
	Avoid String names in Events and Mapping Key
	Avoid Extra sloads on Drippie.status
	Use Custom Errors Instead of Strings
	Increment In The For Loop Post Condition In An Unchecked Block

	Informational
	DripState.count Location and Use
	Type Checking Foregone on DripCheck
	Confirm Blind ERC721 Transfers are Intended
	Code Contains Empty Blocks
	Code Structure Deviates From Best-Practice
	Missing or Incomplete NatSpec
	Checking Boolean Against Boolean
	Drippie.executable Never Returns false Only true or Reverts
	Drippie Use Case Notes
	Augment Documentation for dripcheck.check Indicating Precondition Check Only Performed
	Considerations on the drip state.last and state.config.interval values
	Support ERC1155 in AssetReceiver
	Reorder DripStatus Enum for Clarity
	_gas is Unneeded as Transactor.CALL and Transactor.DELEGATECALL Function Argument
	Licensing Conflict on Inherited Dependencies
	Rename Functions for Clarity
	Owner Has Permission to Drain Value from Drippie Contract

