
The Optimism team is building the OVM, a fully-featured, EVM-compliant execution environment

designed for Layer 2 systems. Starting on March 15th, 2021, we have audited Optimism's code base

during 7 weeks with 3 auditors.

The engagement involved auditing two different versions of the Solidity smart contracts:

The first audited commit was 18e128343731b9bde23812ce932e24d81440b6b7. We worked with

this commit for the first 4 weeks.

The second audited commit was a935e276f5620b40802b52721e3474232e458f72. We worked

with this commit for the last 3 weeks.

The Solidity files in scope were those in the contracts/optimistic-ethereum/OVM/ and contracts/

optimistic-ethereum/libraries/ folders, except the OVM_BondManager.sol, 

OVM_SafetyChecker.sol, ERC1820Registry.sol and OVM_DeployerWhitelist.sol files. It should be

noted that while the Lib_RingBuffer.sol file was originally included in the audit's scope, after

feedback during the audit the file has been deprecated and is expected to change in the short term -

we have therefore not conducted a full assessment of the security of this particular library. Moreover,

the specified commits contain production code that has been temporarily commented out. Our analysis

assumes it will be restored.

All other components of the stack (such as compilers, off-chain services, Layer 2 nodes, or bytecode

checkers) were left completely out scope from the beginning of the audit. We have assumed any out-of-

scope component behaves as intended and documented by the Optimism team.

• 

• 

https://optimism.io/
https://github.com/ethereum-optimism/contracts/tree/18e128343731b9bde23812ce932e24d81440b6b7
https://github.com/ethereum-optimism/contracts/tree/18e128343731b9bde23812ce932e24d81440b6b7
https://github.com/ben-chain/contracts-v2/tree/a935e276f5620b40802b52721e3474232e458f72
https://github.com/ben-chain/contracts-v2/tree/a935e276f5620b40802b52721e3474232e458f72


Furthermore, the Optimism team independently identified a number of issues in the code base that

they shared with us during the audit. For completeness, these are included in an informational note

titled "[N01] Additional issues".

Summary

During the audit we were able to uncover issues of varied nature. The most important relate to critical

security flaws in the fraud proof verification process, which is the fundamental mechanic ensuring

security of the Layer 2 system. We also detected particularly interesting issues in cross-domain

deposits and withdrawals of tokens, mishandling of transaction fees, mismatches in the treatment of

sequenced and queued transactions, as well as potential abuses of the reward dynamics during fraud

proof contribution. Additionally, while not strictly pertaining to security-related issues, this report

includes a significant number of recommendations aimed at improving the overall quality of the

system.

In terms of specification and documentation, even though there have been notable advances, we still

find that there is room for improvements. Gas accounting, upgradeability of core modules, genesis

process, progressive decentralization roadmap, and interactions between Layer 1 contracts and off-

chain services (such as the Sequencer), stand out as significant attention points in this regard. We

acknowledge that the system is still under development, which can render documentation efforts

pointless. Still, we expect that as the system matures and its fundamental mechanics are settled, the

Optimism team will make efforts to produce a comprehensive baseline specification of their layer 2

solution that can serve as the bedrock upon which future versions of the system build.

Regarding overall health and maturity, we found the code to be readable and well-structured, with

enough separation of concerns and modularity to favor long-term maintenance and sustainability.

Having audited an earlier version of the system in November 2020, this time we found a more robust

code base with simpler and more straightforward implementations. The remarkable difference in

number and severity of issues identified between audits is a reflection of how much the code base has

matured in the last months. We expect the system to continue in this path as it further evolves,

incorporating additional feedback from security-minded professionals, development partners and users

alike.

As a final remark, we must highlight that given the sandboxed environment allows for arbitrary code

execution of Layer 2 transactions, the number of possible interactions cannot be audited to exhaustion.

We therefore highly advise:

Following best practices of secure software development, thorough test-driven development, and

mandatory peer-reviews.

Further promoting a public bug bounty program to engage independent security researchers

from the community in uncovering further misbehaviors in the system as the code base evolves.

Continuing with beta testing phases until several projects have been onboarded to the Layer 2

system, and their dynamics have become battle-tested, in particular with respect to fraud proof

• 

• 

• 



verification in Layer 1. In this regard, we value the slow progressive decentralization approach

taken by the Optimism team.

System overview

Documentation about the system main components can be found in the official documentation and 

research articles, as well as in our original audit report. On top of the core components audited in the

early version of the system, in this audit we also included:

Bridge contracts, which essentially allow for message passing between Layer 1 and 2.

Predeploy contracts, which provide essential utilities in Layer 2 (such as a tokenized versioned of

ETH, or decompression of sequenced calldata).

Privileged roles

The owner of the Lib_AddressManager contract can arbitrarily add, delete and modify the

addresses stored. It is therefore entitled to impersonate or change the logic of critical

components of the system at will.

The Sequencer is a single, semi-trusted, off-chain service that is expect to process, order and

append batches of transactions to the Canonical Transaction chain.

There are accounts that can propose state roots in the State Commitment chain. These accounts

should have deposited a bond to be granted the role, and are expected to be penalized if they

misbehave.

As discussed further in the report (see issue "[M03] Initial state root cannot be

challenged"), the entity that provides the first state root to the State Commitment Chain can

decide on the OVM's genesis state.

Update

All serious issues have been fixed or acknowledged by the Optimism team. The code has been

migrated to a new repository with a different commit history. Our review disregards all changes

introduced by the migration, other pull requests, or unrelated changes within the reviewed pull

requests.

Below, our findings in order of importance.

• 

• 

• 

• 

• 

• 

https://community.optimism.io/docs/protocol/protocol.html#system-overview
https://research.paradigm.xyz/optimism
https://blog.openzeppelin.com/private-report-nov-9-2020-fs8a92/
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/resolver/Lib_AddressManager.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/resolver/Lib_AddressManager.sol


Critical severity

[C01] Possible state manipulation after execution of
transactions with invalid gas limit

The run function of the OVM_ExecutionManager contract is executed during a fraud proof to move the

associated State Transitioner from pre-execution to post-execution phase. Transactions with an invalid

gas limit can still be run in a fraud proof, but they are expected to ultimately result in a no-op. In other

words, the pre- and post-state of a transaction with an invalid gas limit should be the same.

Right before finishing execution of a regular transaction (that is, one that does not revert nor return

early), the run function resets to zero the reference to the State Manager stored in the 

ovmStateManager state variable. However, this reference is not reset after finishing execution early 

when the transaction's gas limit is not valid. As a result, the Execution Manager will still be able to

execute calls to the associated State Manager, and in turn the State Manager will consider the caller

Execution Manager as correctly authenticated.

The described behavior allows for anyone to call sensitive functions of the Execution Manager contract

right after the execution of run, which could result in arbitrary state modifications in the State Manager

contract. As a consequence, it would not be possible to successfully finish the fraud proof in the State

Transitioner contract. For example, a malicious actor could call the ovmCREATEEOA function of the 

OVM_ExecutionManager contract, creating a new account in state, which would in turn increment the

total number of uncommitted accounts in the State Manager. This would effectively prevent completing

the transition in the OVM_StateTransitioner contract.

Consider clearing the ovmStateManager state variable after execution of transactions with invalid gas

limits.

Update: Fixed in pull request #366 of the archived ethereum-optimism repository.

[C02] Partially shared keys with EXTENSION nodes
mishandled

Inside the _walkNodePath function of the Lib_MerkleTrie library, when an EXTENSION node is

encountered which shares some, but not all of its key with keyRemainder, the walk will move on to the

node which the EXTENSION node points to, but will only increment the key index by the 

sharedNibbleLength. 

More specifically, when the sharedNibbleLength is not 0, it will be assumed that all nibbles are shared

with the EXTENSION node. The walk will then move to the node which the node links to, while the key

increment will be set to sharedNibbleLength. This will result in an incorrect currentKeyIndex on the

next loop iteration. The _walkNodePath function will assume it has reached the node which the 

EXTENSION node points to, while the currentKeyIndex will correspond to a path in the middle of the 

EXTENSION node.

https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L155
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L155
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/OVM/verification/OVM_StateTransitioner.sol#L355
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/OVM/verification/OVM_StateTransitioner.sol#L328
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/OVM/verification/OVM_StateTransitioner.sol#L357
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L188
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L211
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L186-L189
https://github.com/ethereum-optimism/contracts/blob/ec1afca9e15117608121377b15d66cb56084e52d/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L418
https://github.com/ethereum-optimism/contracts/blob/ec1afca9e15117608121377b15d66cb56084e52d/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L418
https://github.com/ethereum-optimism/contracts/blob/ec1afca9e15117608121377b15d66cb56084e52d/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L460
https://github.com/ethereum-optimism/contracts/blob/ec1afca9e15117608121377b15d66cb56084e52d/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1216
https://github.com/ethereum-optimism/contracts/blob/ec1afca9e15117608121377b15d66cb56084e52d/contracts/optimistic-ethereum/OVM/verification/OVM_StateTransitioner.sol#L415-L418
https://github.com/ethereum-optimism/contracts/blob/ec1afca9e15117608121377b15d66cb56084e52d/contracts/optimistic-ethereum/OVM/verification/OVM_StateTransitioner.sol#L415-L418
https://github.com/ethereum-optimism/contracts/pull/366
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L232
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L232
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L322
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L325
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L325
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L326
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L325
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L326
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L326
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L256
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L256
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L256


This means that the Merkle Trie may incorrectly identify some elements and there may be multiple keys

that map to the same element. During fraud proof execution the described flaw could cause the 

OVM_StateTransitioner contract to incorrectly update storage or account elements, which could lead

to a security vulnerability where invalid fraud proofs would succeed due to incorrect updates in trie

roots.

Since the _walkNodePath function should identify the nearest sibling to the key which is being "walked"

to, consider modifying the _walkNodePath function so that it breaks out of the loop and returns when a

non-fully matching EXTENSION key is found.

Update: Fixed in pull request #747.

[C03] Unbounded nuisance gas

When a transaction is executed, its nuisance gas budget is limited to the transaction gas limit.

Additionally, the nuisance gas is limited in every call frame to the gas provided for that call. However, it

is not limited by the available nuisance gas before the call.

As a result, if the remaining nuisance gas budget is below the remaining transaction gas before an

external call, the nuisance gas budget for the call frame will be incorrectly increased, and the call will

be able to consume more nuisance gas than it should be allowed. In this scenario, the overall nuisance

budget calculation performed after the call will negative overflow. In practice, this means there is no

limit to the amount of nuisance gas that can be used in a transaction, as long as each call frame

restricts its nuisance gas usage to its own regular gas limit.

Consider ensuring the nuisance gas budget of each call frame cannot exceed the overall budget.

Update: Fixed in pull request #1366.

[C04] Valid L1-to-L2 queue transactions may be proven
fraudulent spoofing queue origin

When initializing a fraud proof via the initializeFraudVerification function of the 

OVM_FraudVerifier contract, the relevant transaction is provided so it can be verified to exist within

the Canonical Transaction Chain. However, when verifying a transaction that was added through the L1-

to-L2 queue (that is, via the enqueue function of the OVM_CanonicalTransactionChain contract), the 

l1QueueOrigin field of the transaction is not validated.

As a result, anyone can provide a transaction maliciously setting its l1QueueOrigin field to 

SEQUENCER_QUEUE (instead of L1TOL2_QUEUE) when disputing a transaction that originated in the L1-to-

L2 queue. The gas used by this transaction will be attributed to the wrong queue and any logic that

relies on the ovmL1QUEUEORIGIN opcode may evaluate incorrectly. Naturally, this will produce a

different final state, thus allowing the fraud proof to succeed even if the original transition was valid.

Consider validating the l1QueueOrigin field of the provided transaction when initializing a fraud proof.

https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_StateTransitioner.sol#L430-L439
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_StateTransitioner.sol#L391-L400
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L234
https://github.com/ethereum-optimism/optimism/commit/ae1ac05d7032422a71caf25d16f6e548df5b8d7f
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1836
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L963
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L962
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1047
https://github.com/ethereum-optimism/optimism/pull/1366/commits/a2346c291797813f99b32e1d92f26c33a6d55d2d
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_FraudVerifier.sol#L96
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_FraudVerifier.sol#L124
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L256
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L256
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/codec/Lib_OVMCodec.sol#L63
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/codec/Lib_OVMCodec.sol#L63
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L1189-L1194
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L216
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L330
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L330


Update: Fixed in pull request #1155.

High severity

[H01] Valid transactions cannot be enqueued

Transactions to be appended to the Canonical Transaction Chain (CTC) can come from two sources: the

L1 queue and the Sequencer. When transactions are enqueued in the 

OVM_CanonicalTransactionChain contract via its public enqueue function, they are explicitly limited

in size to MAX_ROLLUP_TX_SIZE (10000 bytes). However, transactions coming from the Sequencer do

not follow the same restriction - they can actually be larger than MAX_ROLLUP_TX_SIZE. As a result, it

might be impossible to enqueue transactions in L1 that could be effectively included via the Sequencer.

To avoid censorship by the Sequencer, it should be possible for any valid sequenced transaction to

instead be enqueued in L1. Therefore, consider enforcing an upper bound of MAX_ROLLUP_TX_SIZE in

the size of transactions that go through the Sequencer.

Update: Fixed in pull request #361 of the archived ethereum-optimism repository.

[H02] Unhandled transfer failures

The token bridge contracts synchronize deposits and withdrawals across the two domains. In particular,

whenever tokens are locked on layer 1, the gateway initiates a cross-domain message to mint

equivalent tokens on layer 2. Similarly, when tokens are burned on layer 2, the token initiates a cross-

domain message to release the funds on layer 1. However, the layer 1 ERC20 gateway does not check

the return value of the deposit or withdrawal transfers. This breaks the synchronization for ERC20

contracts that do not revert on failure, since failed deposits on layer 1 will be incorrectly credited on

layer 2 and burned tokens on layer 2 may not be released on layer 1.

Consider checking the return value on all token transfers and revert on failure.

Update: Fixed in pull request #988.

[H03] Relayers may not receive transaction fees

Transactions that go through the execute function of an instance of the OVM_ECDSAContractAccount

contract are expected to pay transaction fees to relayers. The function assumes that whoever called it

is a relayer, and simply transfers the fee, paid in ovmETH.

However, there are two common cases in which the execute function can be called, and in neither of

them the fee appears to be correctly paid to relayer accounts.

For sequenced transactions, their entrypoint is set to the address of the 

OVM_ProxySequencerEntrypoint predeployed contract. Ultimately, it is this proxy who calls the 

• 

https://github.com/ethereum-optimism/optimism/pull/1155/commits/aafb141bf798c657e8e0193e718068bed9211ebf
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L256
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L256
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L264-L267
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L41
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L41
https://github.com/ethereum-optimism/contracts/pull/361/commits/8da1c24bb08b8a10b56747add78c414e58ebadf4
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/Abs_L1TokenGateway.sol#L158-L162
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/Abs_L1TokenGateway.sol#L172-L176
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/Abs_L2DepositedToken.sol#L187
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/Abs_L2DepositedToken.sol#L197-L201
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/Abs_L2DepositedToken.sol#L197-L201
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/OVM_L1ERC20Gateway.sol#L76-L80
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/OVM_L1ERC20Gateway.sol#L98
https://github.com/ethereum-optimism/optimism/pull/988/commits/ce8071bc5ead86b75d5995111597bcdc4dc34385
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/accounts/OVM_ECDSAContractAccount.sol#L46
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/accounts/OVM_ECDSAContractAccount.sol#L46
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/accounts/OVM_ECDSAContractAccount.sol#L92-L101
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/accounts/OVM_ECDSAContractAccount.sol#L97-L99
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/predeploys/OVM_ProxySequencerEntrypoint.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/predeploys/OVM_ProxySequencerEntrypoint.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/predeploys/OVM_SequencerEntrypoint.sol#L62-L70


execute function of any OVM_ECDSAContractAccount contract. As a result, when the execute

function queries the ovmCALLER, the address returned will be the address of the 

OVM_ProxySequencerEntrypoint contract, and fees will be sent to it. It is worth noting that

neither this contract nor its associated implementation OVM_SequencerEntrypoint have any

kind of functionality to handle the received fees.

For queued transactions, their entrypoint is set by whoever enqueues the transaction in the

Canonical Transaction Chain. If this entrypoint is set to an instance of the 

OVM_ECDSAContractAccount contract, when the transaction is run and the execute function is

called, the internal call to ovmCALLER, will simply return the default address for ovmCALLER,

which is determined by the DEFAULT_ADDRESS constant address of the OVM_ExecutionManager

contract. As a result, the fees will be sent to this address.

Consider ensuring that when transaction fees are paid from instances of the 

OVM_ECDSAContractAccount contract, fees are correctly transferred to the expected relayer addresses.

Update: Fixed in pull request #1029. Fees are now transferred to a designated Sequencer Fee Wallet.

[H04] Irrelevant proof contributions are accepted

The contributesToFraudProof modifier declared in the Abs_FraudContributor contract is used to 

reward users for participating in proving fraud. 

There are several functions marked with this modifier to assign rewards to users, regardless of whether

they are making meaningful proof contributions. Some examples of irrelevant contributions that would

grant rewards include:

contributing irrelevant contract state before a fraud proof.

contributing irrelevant storage slots before a fraud proof.

attempting to initialize a fraud proof that has already been initialized. This is possible because if

the fraud proof has been initialized, executing the initializeFraudVerification function of

the OVM_FraudVerifier contract will still finish execution rather than reverting.

It should be noted that the OVM_BondManager contract is out this audit's scope. Nevertheless, consider

changing the contributesToFraudProof modifier or the logic within the OVM_BondManager contract to

prevent abuse of rewards during fraud proofs.

Update: Acknowledged. The Optimism team decided not to prioritize this issue because it does not

apply to the current release, since the bond manager is disabled.

[H05] Repeatedly exceeding nuisance gas limit

Transactions are provided a nuisance gas budget to limit the amount of overhead that could be required

in the pre-execution and post-execution phase of a fraud proof. However, this does not prevent

• 

• 

• 

• 

https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/predeploys/OVM_SequencerEntrypoint.sol#L62-L70
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/predeploys/OVM_SequencerEntrypoint.sol#L62-L70
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/accounts/OVM_ECDSAContractAccount.sol#L94
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/accounts/OVM_ECDSAContractAccount.sol#L94
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/predeploys/OVM_SequencerEntrypoint.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/predeploys/OVM_SequencerEntrypoint.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L256
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/accounts/OVM_ECDSAContractAccount.sol#L94
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/accounts/OVM_ECDSAContractAccount.sol#L94
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L75
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L75
https://github.com/ethereum-optimism/optimism/pull/1029/commits/4a5bb28203dc6460b6e7ddaff3cd89e45a6b4d54
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/Abs_FraudContributor.sol#L12
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/Abs_FraudContributor.sol#L12
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/Abs_FraudContributor.sol#L11
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_StateTransitioner.sol#L193
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_StateTransitioner.sol#L265
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_FraudVerifier.sol#L103
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_FraudVerifier.sol#L107-L109
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_BondManager.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_BondManager.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/Abs_FraudContributor.sol#L12
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/Abs_FraudContributor.sol#L12
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1836


transactions from breaching the limit, it merely detects when they do so. In effect, they are able to

exceed their budget by one operation. 

Moreover, the nuisance gas provided to each call frame is limited to the gas provided for that call,

which also limits how much of the transaction's nuisance gas it can consume. Therefore, each

individual call frame can exceed its budget by one operation, but the transaction will only be charged

for the specified budget. Consequently, if a transaction consisted entirely of call frames with minimal

gas that maximally exceed their nuisance gas budget, the whole transaction could create significantly

more overhead than its budget would suggest. The only limit to this attack is the number of cheap call

frames that can fit in a transaction.

The operation that creates the most overhead is interacting with a large contract, since this may

require deploying that contract to the EVM during a fraud proof. The Optimism team have indicated

they intend to introduce a minimum nuisance gas budget in each call frame that covers the cost of

deploying the largest possible EVM contract. While this would mitigate the vulnerability, it should be

noted that the call frame could still consume this nuisance gas on other operations before interacting

with a large contract, so it would still be possible to consume twice as much nuisance gas as the

transaction budget would suggest. Consider documenting this behavior in the function comments.

Update: Fixed in pull request #1366. Transactions that could breach their nuisance gas limit are now

reverted pre-emptively.

Medium severity

[M01] Potential mismatch in allowed gas limit for
sequenced and queued transactions

Both enqueued and sequenced transactions are expected to be limited in the amount of gas they can

consume. For enqueued transactions the enqueue function of the OVM_CanonicalTransactionChain

contract ensures that their gasLimit does not exceed the maxTransactionGasLimit (a parameter of

the Canonical Transaction Chain set during construction by the contract's deployer). Conversely, for

sequenced transactions the expected gasLimit is only validated during verification of a sequenced

transaction and actually retrieved from the Execution Manager. Since there is no logic programmatically

enforcing that the gas limit retrieved from the Execution Manager matches the gas limit enforced by

the Canonical Transaction Chain, there is room for the gasLimit of sequenced and enqueued

transactions to be capped differently. 

While the described behavior would introduce an unexpected difference between in how enqueued and

sequenced transactions are treated in the OVM, it would only occur due to a misconfiguration of the

system by its deployers or a corrupt upgrade.

Consider defining a single source of truth that dictates the gas limit for both sequenced and enqueued

transactions. Alternatively, consider introducing off-chain validations to ensure these values always

match, reverting new configurations or upgrades otherwise.

https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1596-L1598
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L963-L964
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1047
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1332-L1334
https://github.com/ethereum-optimism/optimism/pull/1366/commits/a2346c291797813f99b32e1d92f26c33a6d55d2d
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L256
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L256
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L269-L272
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L75
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L1122


Update: Acknowledged. The Optimism team intends to address this in the future.

[M02] Pre-state root and transaction may not uniquely
identify transitions

The OVM_FraudVerifier contract identifies State Transitioner contracts using the pre-state root and

the transaction hash. The same function is used by the OVM_BondManager contract. Note that fraud

proofs are intended to remove the post-state root (and subsequent state roots) but they are specified

by the combination of pre-state root and transaction hash. However, given the possibility of repeated

transactions and state roots, this approach may not uniquely identify a particular transition. 

This means that a fraud proof can apply equally to all transitions that use the same pre-state root and

transaction hash. However, only one pre-state root can be specified during finalization of the proof. As a

result, legitimate fraud proofs that attempt to remove the first invalid state root can be maliciously

finalized on a later state root, forcing the original fraud proof to be restarted. This can be achieved by

tracking the progress of active fraud proofs or by front-running calls to the 

finalizeFraudVerification function, and could prevent the first invalid state root from being

removed indefinitely.

It should be noted that this attack is possible because State Transitioner contracts are removed once

they are finalized. The code base includes a comment suggesting that they may be retained in future

versions, which would allow the same State Transitioner to be reused for every matching transition. Yet

it is worth noting that this may require a redesign of how this function interacts with the Bond Manager.

An alternative approach can be based on identifying State Transitioner contracts with the unused 

stateTransitionIndex variable as well to avoid collisions. Interestingly, since it is possible for a state

root to be removed from the State Commitment Chain and then be reintroduced at the same location

(possibly with a different history and batch structure), this would not necessarily uniquely identify a

transition, but in such a case, reusing the State Transitioner contract would be appropriate.

Update: Acknowledged. This is not exploitable while the Sequencer is assumed to be trusted and the

public transaction queue mechanism is disabled. The Optimism team intends to address this in the

future.

[M03] Initial state root cannot be challenged

The initializeFraudVerification function of the OVM_FraudVerifier contract intends to ensure

that the provided pre-state root and transaction correspond to each other. In other words, that the

referenced transaction was executed against the provided pre-state. This is implemented in this 

require statement, where the offset suggests that the element at index N in the State Commitment

Chain is the post-state root of the transaction at index N in the Canonical Transaction Chain. This is

consistent with the fact that the size of the State Commitment Chain is bounded by the total number of

transactions in the Canonical Transaction Chain.

However, since fraud proofs require the pre-state to exist in the State Commitment Chain, it is

impossible to prove fraud against the first state root in the State Commitment Chain. As a result, the

https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_FraudVerifier.sol#L63
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_BondManager.sol#L80
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_BondManager.sol#L80
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_FraudVerifier.sol#L160-L161
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_FraudVerifier.sol#L211
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_FraudVerifier.sol#L169
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_StateTransitioner.sol#L67
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_StateTransitioner.sol#L67
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_StateTransitioner.sol#L67
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_FraudVerifier.sol#L92
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_FraudVerifier.sol#L92
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_FraudVerifier.sol#L94-L95
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_FraudVerifier.sol#L98-L99
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_FraudVerifier.sol#L133-L136
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_FraudVerifier.sol#L133-L136
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_FraudVerifier.sol#L133-L136
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_StateCommitmentChain.sol#L151-L154
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_StateCommitmentChain.sol#L151-L154
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_FraudVerifier.sol#L94


first transaction in the Canonical Transaction Chain can be considered meaningless, and the first state

root in the State Commitment Chain will remain unchallenged. This effectively introduces a remarkable

trust assumption, where the entity that provides the first state root can decide on the OVM's genesis

state.

Moreover, since state roots are deleted in batches instead of individually, if the genesis state root

shares the same batch with other state roots, and one of them is successfully proven fraudulent, the

entire batch of state roots (including the genesis state root) will be removed, and therefore the next

state root to be appended to the State Commitment Chain will become the new "genesis" state.

Consider thoroughly documenting the deployment procedure, including the fact that the first

transaction is unused, and how the Optimism team intends to ensure the first state root will be the

intended genesis state. Alternatively, consider introducing a mechanism to challenge the first post-

state root against a known genesis state.

Update: Acknowledged, but won't fix. Optimism's statement for this issue:

The initial state root is analogous to Ethereum's genesis block. It cannot be the result of a

fraudulent transaction, users of an Optimistic Ethereum deployment must accept the initial state

root in the same way that they accept the state transition rules for any blockchain.

[M04] Sequencer entrypoint contracts ignore success flags
and returned data

The fallback functions of the OVM_ProxySequencerEntrypoint and OVM_SequencerEntrypoint

contracts respectively execute ovmDELEGATECALL and ovmCALL calls, yet they fail to handle the success

flag returned by these calls, as well as any data returned. As a consequence, calls to these fallback

functions could fail silently, and might be erroneously seen as successful by callers.

To avoid unexpected errors, consider handling success flags and return data for these calls. It should be

noted that fallback function return values were introduced in solidity 0.7.6, so they will not be

supported by the full range of target compilers.

Update: Fixed for the OVM_SequencerEntrypoint case in pull request #603. The 

OVM_ProxySequencerEntrypoint contract was removed in pull request #549.

[M05] Nuisance gas left is not reduced to zero when
operation exceeds budget

The _useNuisanceGas function of the OVM_ExecutionManager contract is intended to reduce a certain

amount of nuisance gas during transaction execution. When the amount of nuisance gas required by

the operation exceeds the nuisance gas left, the function reverts the call with flag 

EXCEEDS_NUISANCE_GAS. However, this flag is not taken into account when accounting for the call's

nuisance gas consumption within the _handleExternalMessage function. Therefore, the nuisance gas

https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_FraudVerifier.sol#L282
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/predeploys/OVM_ProxySequencerEntrypoint.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/predeploys/OVM_ProxySequencerEntrypoint.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/predeploys/OVM_SequencerEntrypoint.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/predeploys/OVM_SequencerEntrypoint.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/predeploys/OVM_ProxySequencerEntrypoint.sol#L25
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/predeploys/OVM_ProxySequencerEntrypoint.sol#L25
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/predeploys/OVM_SequencerEntrypoint.sol#L62
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/predeploys/OVM_SequencerEntrypoint.sol#L62
https://github.com/ethereum/solidity/releases/tag/v0.7.6
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/predeploys/OVM_ProxySequencerEntrypoint.sol#L2
https://github.com/ethereum-optimism/optimism/pull/603/commits/293a386efb8aa574eb53767a3f09cda928a09095
https://github.com/ethereum-optimism/optimism/pull/549/commits/a4132c7c0a70c773da084fea5ed2a68b88e0cc27
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1589
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1589
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1600
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1600
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1596
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1597
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1038-L1043
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1038-L1043


left for the transaction is never reduced to zero, allowing subsequent operations to continue consuming

nuisance gas.

For correctness, consider reducing to zero the amount of nuisance gas left whenever a call raises the 

EXCEEDS_NUISANCE_GAS flag.

Update: Fixed in pull request #1366. Transactions revert pre-emptively so they will not exceed their

nuisance gas limit, but the nuisance gas budget is still consumed.

Low severity

[L01] Appending transactions to the Canonical Transaction
Chain in specific blocks might unexpectedly fail

Enqueued transactions cannot be included by non-Sequencer accounts during the force inclusion

period. If a user attempts to do so calling the appendQueueBatch function of the 

OVM_CanonicalTransactionChain contract, then the call would revert at this require statement.

Once the force inclusion period finishes for the next enqueued transaction to be appended, then the

Sequencer just cannot ignore it, and therefore the queue transaction must be included. This behavior is

enforced by this require statement executed during a call to the appendSequencerBatch function.

However, the require statements referenced above enforce strict inequalities, failing to consider the

case where the current block's timestamp is equal to the sum of the next queue element's timestamp

and the force inclusion period. In this scenario, the Sequencer would be prevented from adding

transactions (since it should first append the transaction at the queue's front), but it would also be

impossible to add the enqueued transaction via the appendQueueBatch function. As a result, attempts

to append transactions to the Canonical Transaction Chain in this scenario would unexpectedly fail. It

should be noted that the issue would be automatically resolved by waiting for the next block.

Consider modifying one of the two strict inequalities referenced above to ensure enqueued transactions

can always be appended to the Canonical Transaction Chain, either by the Sequencer or via the 

appendQueueBatch function.

[L02] Inaccessible code when retrieving Merkle roots

There is an inaccessible if block in the getMerkleRoot function of the Lib_MerkleTree library. This is

due to the fact that the require statement above it reverts in the case that the caller-provided 

_elements array has no elements.

Because inside the if block the function is returning the first element of the array, we assume that the

original intended behavior was to validate that the _elements array has a single element. Consider

modifying the condition evaluated to reflect this.

Update: This issue was identified in the first audited commit. It is fixed in the latest audited commit.

https://github.com/ethereum-optimism/optimism/pull/1366/commits/a2346c291797813f99b32e1d92f26c33a6d55d2d
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L337
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L337
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L359-L362
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L359-L362
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L992-L995
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L992-L995
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L393
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L393
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/libraries/utils/Lib_MerkleTree.sol#L36-L38
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/libraries/utils/Lib_MerkleTree.sol#L36-L38
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/libraries/utils/Lib_MerkleTree.sol#L31-L34
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/libraries/utils/Lib_MerkleTree.sol#L31-L34
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/libraries/utils/Lib_MerkleTree.sol#L37


[L03] Lack of input validations

In the interest of predictability, some functions could benefit from more stringent input validations.

The init function of the Abs_L2DepositedToken abstract contract does not ensure that the

passed token gateway address is non-zero. If it is called with a zero address (before the gateway

address in state is set to a non-zero value), it will incorrectly emit an Initialized event.

The getMerkleRoot function of the Lib_MerkleTree library provides 16 default values, which

implicitly limits the depth of unbalanced trees to 16. Balanced trees, on the other hand, have no

restriction. Although this is unlikely to matter in practice, usage assumptions should be

documented and validated wherever possible. Consider explicitly bounding the number of

elements by 216.

According to the RLP specification described in the Appendix B of Ethereum's Yellow Paper, "Byte

arrays containing 264 or more bytes cannot be encoded". This restriction is not being explicitly

enforced by the writeBytes function of the Lib_RLPWriter library.

The _editBranchIndex function of the Lib_MerkleTrie library should explicitly validate that 

the passed index is lower than the TREE_RADIX constant to avoid misusage.

The _getNodePath function of the Lib_MerkleTrie library should explicitly validate that the

passed node is a leaf or extension node to avoid misuse.

[L04] Merkle tree elements are overwritten

The getMerkleRoot function of the Lib_MerkleTree library accepts an array of elements and

computes the corresponding Merkle root. In the process, it unexpectedly overwrites up to half of the

elements, thereby corrupting the original array. The current code base has one instance, within the 

appendStateBatch function of the OVM_StateCommitmentChain contract, where the array is used after

it is passed to the getMerkleRoot function, but fortunately it only reads the length, which is

unchanged. This function calculates the Merkle root of its _batch parameter, which means that the

caller may attempt to reuse the (now corrupted) array.

Consider including warning documentation on the getMerkleRoot and appendStateBatch functions

stating that the input may be modified.

Update: This issue was identified in the first audited commit. It was fixed in the latest audited commit

by adding relevant documentation.

[L05] Misleading and / or erroneous docstrings and
comments

In the OVM_CanonicalTransactionChain contract:

• 

• 

• 

• 

• 

• 

https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/Abs_L2DepositedToken.sol#L59
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/Abs_L2DepositedToken.sol#L59
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/Abs_L2DepositedToken.sol#L60
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/Abs_L2DepositedToken.sol#L60
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/Abs_L2DepositedToken.sol#L68
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/utils/Lib_MerkleTree.sol#L23
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/utils/Lib_MerkleTree.sol#L23
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/utils/Lib_MerkleTree.sol#L41-L58
https://ethereum.github.io/yellowpaper/paper.pdf#appendix.B
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/rlp/Lib_RLPWriter.sol#L23
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/rlp/Lib_RLPWriter.sol#L23
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L864
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L864
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L866
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L34-L35
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L34-L35
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L603
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L603
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L604
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L604
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/libraries/utils/Lib_MerkleTree.sol#L22
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/libraries/utils/Lib_MerkleTree.sol#L22
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/libraries/utils/Lib_MerkleTree.sol#L88
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/libraries/utils/Lib_MerkleTree.sol#L88
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/OVM/chain/OVM_StateCommitmentChain.sol#L340
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/OVM/chain/OVM_StateCommitmentChain.sol#L127
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/OVM/chain/OVM_StateCommitmentChain.sol#L127


The comment in line 320 should say "the real queue index" instead of "the real queue length".

The @return tag of the verifyTransaction function states that the function returns false if

the transaction does not exist in the Canonical Transaction Chain. However, the function will

revert in such scenario.

The @return tags of the _verifySequencerTransaction and _verifyQueueTransaction

functions state that they return false upon failure. Yet in such scenario they revert.

In the OVM_ExecutionManager contract:

The @return tag of the ovmL1QUEUEORIGIN function states that an address is returned, yet the

actual returned value is the element of an enum.

The inline comment in line 857 states that the nonce is updated even if contract creation fails,

yet that is incorrect. When the contract creation fails with a revert due to the deployer not being

allowed, the account's nonce is not updated (see note "[N10] Contract creation can revert

upon failure" for additional details).

An inline comment in line 1039 states that the revert flag "EXCEEDS_NUISANCE_GAS explicitly

reduces the remaining nuisance gas for this message to zero". However, as can be observed in

the related _useNuisanceGas function where the flag is raised, the remaining nuisance gas of

the message is not set to zero (as described in issue "[M05] Nuisance gas left is not

reduced to zero when operation exceeds budget")

An inline comment in line 1358 mentions "loading" an account but is referring to changing an

account.

In the Lib_Bytes32Utils library:

The @return tag of the removeLeadingZeros function specifies that the returned value is 

bytes32, while it actually returns a bytes type.

In the OVM_L1ERC20Gateway contract:

lines 63 and 64 imply that ETH is being deposited, when actually an ERC20 token is being

deposited.

In the Abs_L1TokenGateway contract:

The comment on line 77 describes a withdrawal operation instead of a deposit.

The comment on line 129 says "withdrawal" instead of "deposit".

The comment on line 188 says the function will fail if the L2 withdrawal was not finalized, but

that logic is not included within the function.

In the Abs_L2DepositedToken contract:

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L320
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L576
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L576
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L1107
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L1107
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L1154
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L1154
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L328
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L328
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L335
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L857
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1039
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1589
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1589
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1358
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/utils/Lib_Bytes32Utils.sol#L84
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/utils/Lib_Bytes32Utils.sol#L84
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/utils/Lib_Bytes32Utils.sol#L92
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/utils/Lib_Bytes32Utils.sol#L92
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/OVM_L1ERC20Gateway.sol#L63-L64
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/Abs_L1TokenGateway.sol#L77
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/Abs_L1TokenGateway.sol#L129
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/Abs_L1TokenGateway.sol#L188


Docstrings for the contract's constructor should say "L2 Messenger address" instead of "L1

Messenger address".

Documented parameters _to and _amount of the finalizeDeposit function refer to

withdrawals, when they should be referring to deposits.

In the OVM_L2ToL1MessagePasser contract:

Docstrings state that the contract's runtime target is the EVM, while it should say OVM.

In the OVM_StateManager contract:

Docstrings in lines 274 and 292 state that the related functions are only called during ovmCREATE

or ovmCREATE2 operations, failing to account that they are also called during ovmCREATEEOA.

In the OVM_StateTransitioner contract:

Docstrings for the getPostStateRoot function state that the value returned corresponds to the 

"state root after execution". However, if it is called prior to the transaction being applied, the

function will return the state root before execution.

In the Lib_MerkleTrie library:

Docstrings for the _getNodeValue function should say "Gets the value for a node" instead of

"Gets the path for a node".

In the OVM_ECDSAContractAccount contract:

The comment on line 17 indicates that eth_sign messages can be parsed, but this functionality

has been removed.

The comment on line 73 appears to be removable as it is similar to the comment on line 79.

[L06] Missing and / or incomplete docstrings

Some contracts and functions in the code base lack documentation or include incomplete descriptions.

This hinders reviewers' understanding of the code's intention, which is fundamental to correctly assess

not only security, but also correctness. Additionally, docstrings improve readability and ease

maintenance. They should explicitly explain the purpose or intention of the functions, the scenarios

under which they can fail, the roles allowed to call them, the values returned and the events emitted.

Below we list all instances detected during the audit.

All functions of the Lib_BytesUtils library.

In the OVM_CanonicalTransactionChain contract:

Docstrings for the _getBatchExtraData function are missing two @return tags.

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/Abs_L2DepositedToken.sol#L42-L44
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/Abs_L2DepositedToken.sol#L215-L216
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/predeploys/OVM_L2ToL1MessagePasser.sol#L15
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_StateManager.sol#L274
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_StateManager.sol#L292
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_StateTransitioner.sol#L144-L148
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_StateTransitioner.sol#L144-L148
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L634-L638
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L634-L638
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/accounts/OVM_ECDSAContractAccount.sol#L17
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/accounts/OVM_ECDSAContractAccount.sol#L73
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/accounts/OVM_ECDSAContractAccount.sol#L79
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/utils/Lib_BytesUtils.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/utils/Lib_BytesUtils.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L648-L652
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L648-L652


Docstrings for the _getQueueElement function are missing the _queueRef parameter.

Docstrings for the _getSequencerLeafHash function are missing the _hashMemory parameter.

In the iOVM_StateCommitmentChain interface:

Docstrings for the verifyStateCommitment function are missing a @return tag.

In the OVM_StateCommitmentChain contract:

Docstrings for the constructor are missing parameters _fraudProofWindow and 

_sequencerPublishWindow.

In the OVM_ExecutionManager contract:

Docstrings for the constructor are missing the _gasMeterConfig and _globalContext

parameters.

Docstrings for the simulateMessage function are missing the _ovmStateManager parameter and

the returned values.

In all predeploy contracts, docstrings could include the address at which each contract will be

found in Layer 2.

Consider thoroughly documenting all functions (and their parameters) that are part of the contracts'

public API. Functions implementing sensitive functionality, even if not public, should be clearly

documented as well. When writing docstrings, consider following the Ethereum Natural Specification

Format (NatSpec).

[L07] Undocumented literal values

Throughout the code base, there are several instances of literal values with unexplained meaning.

Moreover, some of them are not declared as constant state variables, which further hinders code

readability. Literal values in the code base without an explained meaning make the code harder to read,

understand and maintain, thus hindering the experience of developers, auditors and external

contributors alike. Following we include a list of literal values that should be further documented and

explained.

In OVM_ExecutionManager.sol:

Addresses in lines 545, 826 and 908.

Fixed gas discounts applied in line 391, line 430, line 580, line 614, and line 649.

Net gas costs applied in line 681 and line 707.

The value 100 on line 916.

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L742-L746
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L742-L746
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L749
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L749
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L797-L803
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L797-L803
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L808
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L808
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/iOVM/chain/iOVM_StateCommitmentChain.sol#L88-L93
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/iOVM/chain/iOVM_StateCommitmentChain.sol#L88-L93
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_StateCommitmentChain.sol#L44-L467
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L81-L83
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1868-L1873
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1868-L1873
https://github.com/ben-chain/contracts-v2/tree/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/predeploys
https://solidity.readthedocs.io/en/develop/natspec-format.html
https://solidity.readthedocs.io/en/develop/natspec-format.html
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L545
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L826
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L908
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L391
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L430
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L580
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L614
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L649
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L681
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L707
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L916


In OVM_StateTransitioner.sol:

The number 100000 in line 341.

In OVM_L1CrossDomainMessenger.sol:

The number 0 in line 246.

The address 0x4200000000000000000000000000000000000000 in line 254.

The number 1 in line 270.

In Lib_MerkleTrie.sol:

The number 2 in lines 785 and 811 should be replaced with LEAF_OR_EXTENSION_NODE_LENGTH.

In OVM_CanonicalTransactionChain.sol:

The number 15 in line 627 should be replaced with BATCH_CONTEXT_START_POS.

Developers should define a constant variable for every literal value used, giving it a clear and self-

explanatory name. Additionally, inline comments explaining how they were calculated or why they were

chosen are highly recommended. Following Solidity's style guide, constants should be named in 

UPPER_CASE_WITH_UNDERSCORES format, and specific public getters should be defined to read each one

of them if appropriate.

[L08] Unspecified behavior of OVM gas refund for revert
flags

In the OVM_ExecutionManager contract, certain revert flags trigger a refund of OVM gas in the

transaction being run. However, there are other flags such as EXCEEDS_NUISANCE_GAS and 

UNINITIALIZED_ACCESS which are not taken into account for gas refunds, their expected behavior

being unspecified. The EXCEEDS_NUISANCE_GAS flag is raised when there is not enough nuisance gas to

continue with transaction execution, while the UNINITIALIZED_ACCESS flag is raised when the 

ovmCALLER opcode is executed in the transaction's entrypoint.

To better define the behavior of gas refunds in the OVM, consider specifying if and how gas refunds

should be applied for the mentioned revert flags.

[L09] Nuisance gas proportional to code size is charged
unnecessarily when changing an account

Within the _checkAccountChange function of the OVM_ExecutionManager contract, nuisance gas is 

charged proportional to the code size of the account. Since i) it can be assumed that the code deployed

in the pre-execution phase of the fraud proof will not change, and ii) nuisance gas proportional to code

• 

• 

• 

• 

• 

• 

https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_StateTransitioner.sol#L341
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L1CrossDomainMessenger.sol#L246
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L1CrossDomainMessenger.sol#L254
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L1CrossDomainMessenger.sol#L270
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L785
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L811
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L39
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L39
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L627
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L47
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L47
https://solidity.readthedocs.io/en/v0.7.6/style-guide.html#constants
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1019-L1022
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/iOVM/execution/iOVM_ExecutionManager.sol#L16
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/iOVM/execution/iOVM_ExecutionManager.sol#L16
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/iOVM/execution/iOVM_ExecutionManager.sol#L22
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/iOVM/execution/iOVM_ExecutionManager.sol#L22
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1597
https://community.optimism.io/docs/protocol/evm-comparison.html#nuisance-gas
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L241
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1362-L1363


size is already charged when initially loading an account for the first time, it appears unnecessary to

charge nuisance gas again the first time the account (but not its code) is changed.

Consider removing the nuisance gas fee associated with contract code size within the 

_checkAccountChange function. Note that the solution to this issue might impact what is described in

the informational note "[N08] Minimum nuisance gas per contract creation is charged twice".

[L10] Unnecessary handling of single byte returned data

In the Lib_SafeExecutionManagerWrapper library, the internal _safeExecutionManagerInteraction

function handles a case in which the returned data from a call to the OVM_ExecutionManager is a single

byte. This code segment appears to be outdated, left over from an earlier version of the system, and it

is no longer used.

Additionally, the ovmEXTCODECOPY function of the OVM_ExecutionManager contract introduces an 

artificial manipulation to avoid users inadvertently triggering this special case.

Consider removing both code segments to favor simplicity and avoid confusion.

[L11] Incorrect state transitioner index

When deploying a new OVM_StateTransitioner contract, the OVM_FraudVerifier contract incorrectly

passes the index of the state root in its corresponding batch, confusing it with the state root's index in

the State Commitment chain. The same mistake is made when emitting the FraudProofInitialized

and FraudProofFinalized events.

Consider replacing these values with the index of the state root in the State Commitment chain.

[L12] Inconsistent and error-prone storage references in
proxy contracts

There are three different proxy contracts implemented, all of them following a different approach when

handling storage references.

The OVM_ProxySequencerEntrypoint contract stores the implementation and owner addresses

in continuous storage slots at positions 0 and 1 (as can be seen in the internal getter and setter

functions for these addresses). While this approach is certainly simple, it can be considered

fragile and error-prone. In particular, any poorly constructed implementation that does not take

into account the storage layout of the the proxy might accidentally cause a storage collision, and

overwrite these two sensitive proxy variables. The problem is aggravated by the fact that the

two state variables are not explicitly declared (and therefore visible) in the contract's state, but

rather low-level ovmSSTORE and ovmSLOAD operations are performed to handle them.

• 

• 

https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1332-L1333
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/wrappers/Lib_SafeExecutionManagerWrapper.sol#L354-L357
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L747
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_FraudVerifier.sol#L138
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_FraudVerifier.sol#L138
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_FraudVerifier.sol#L142
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_FraudVerifier.sol#L142
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_FraudVerifier.sol#L215
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_FraudVerifier.sol#L215
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/predeploys/OVM_ProxySequencerEntrypoint.sol#L69-L115
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/predeploys/OVM_ProxySequencerEntrypoint.sol#L69-L115


The OVM_ProxyEOA contract stores the implementation address in the storage slot dictated by its

IMPLEMENTATION_KEY constant, currently set to 

0xdeaddeaddeaddeaddeaddeaddeaddeaddeaddeaddeaddeaddeaddeaddeaddead.

The Lib_ResolvedDelegateProxy contract does not follow either of the previous approaches.

Instead, it uses private mappings in state to store two addresses corresponding to the 

Lib_AddressManager and implementation contracts, which is said to include a "known flaw"

without providing further details.

For a more robust and consistent implementation of proxy contracts, consider always following

standardized storage slots for relevant addresses in state. Refer to EIP 1967 for one possible approach.

This should allow building common, reusable tooling to facilitate reliable inspection and interaction with

all proxy contracts in the system.

[L13] Inconsistent key slicing when computing trie root

The _getUpdatedTrieRoot function of the Lib_MerkleTrie library is intended to compute a Merkle

trie root from a given path to a key-value pair. As it iterates through the path, it consumes the

corresponding parts of the key by slicing it depending on the type of each node found. Whenever a Leaf

or Extension node is found, the key is reduced in size appropriately (see lines 509 and 513), regardless

of whether the previous identified node is the last in the path. However, this is not the case for Branch

nodes, where the key is only sliced if the previous identified node is not the last in the path.

Consider consistently slicing the key when computing the root of Merkle tries.

[L14] Branch node modification in Merkle Trie may deviate
from specification

The _editBranchIndex function of the Lib_MerkleTrie library does not RLP-encode values if their

length is less than 32 bytes. This behavior does not appear to conform with the available specification

for Merkle Trie. Consider either complying with the referenced specification, or alternatively document

what specification was used for the implementation of the Lib_MerkleTrie library.

[L15] Unnecessary use of assembly

The getMerkleRoot function of the Lib_MerkleTree library uses assembly to pack elements

before hashing them (see here and here). Consider using the globally available 

abi.encodePacked function instead.

The slice function of the Lib_BytesUtils library uses assembly to return a zero-length array.

Consider replacing these lines simply returning the empty array tempBytes.

• 

• 

• 

https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/accounts/OVM_ProxyEOA.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/accounts/OVM_ProxyEOA.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/accounts/OVM_ProxyEOA.sol#L23
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/accounts/OVM_ProxyEOA.sol#L23
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/resolver/Lib_ResolvedDelegateProxy.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/resolver/Lib_ResolvedDelegateProxy.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/resolver/Lib_ResolvedDelegateProxy.sol#L24-L25
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/resolver/Lib_ResolvedDelegateProxy.sol#L41-L42
https://eips.ethereum.org/EIPS/eip-1967
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L482
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L482
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L500
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L509
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L513
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L527
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L864
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L864
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L875
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L875
https://eth.wiki/fundamentals/rlp
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/utils/Lib_MerkleTree.sol#L23
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/utils/Lib_MerkleTree.sol#L23
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/utils/Lib_MerkleTree.sol#L95-L98
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/utils/Lib_MerkleTree.sol#L84-L87
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/utils/Lib_BytesUtils.sol#L13
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/utils/Lib_BytesUtils.sol#L13
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/utils/Lib_BytesUtils.sol#L70-L78


[L16] Incorrect parsing of booleans in RLP library

The readBool function of the Lib_RLPReader library converts an RLP-encoded boolean value into a

boolean type. The function returns false only if the provided value is 0. However, in Geth false is

encoded as 0x80, not 0x00. For this encoding of false, the readBool function would incorrectly

revert. The flawed behavior can be reproduced by simply attempting to execute 

Lib_RLPReader.readBool(Lib_RLPWriter.writeBool(false)), which currently triggers a revert with

message Invalid RLP boolean value, must be 0 or 1.

Consider updating the implementation of the readBool function to check for the case that the input is 

0x80 and return false accordingly. Alternatively, given that this function is never used, consider

removing it from the code base.

[L17] Lookup key strings are not centrally defined

Known, legitimate contracts are tracked in the addresses mapping of the Lib_AddressManager

contract. New entries can be added by a privileged address via the setAddress function, and the 

getAddress function function acts as a public getter to query the registry providing a string-type key.

While this registry is used by several different contracts to get the addresses of registered contracts,

the strings used as keys to query the registry are not centrally defined. The identified strings are:

"OVM_L2MessageRelayer"

"OVM_L2BatchMessageRelayer"

"OVM_StateCommitmentChain"

"OVM_L2CrossDomainMessenger"

"OVM_CanonicalTransactionChain"

"Proxy__OVM_L1CrossDomainMessenger"

"OVM_L1MessageSender"

"OVM_L1CrossDomainMessenger"

"OVM_L2ToL1MessagePasser"

"OVM_ChainStorageContainer:CTC:batches"

"OVM_ChainStorageContainer:CTC:queue"

"OVM_Sequencer"

"OVM_ExecutionManager"

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/rlp/Lib_RLPReader.sol#L336
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/rlp/Lib_RLPReader.sol#L336
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/rlp/Lib_RLPReader.sol#L361
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/rlp/Lib_RLPReader.sol#L361
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/rlp/Lib_RLPReader.sol#L361
https://github.com/ethereum/go-ethereum/blob/v1.10.2/rlp/encode_test.go#L93
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/rlp/Lib_RLPReader.sol#L356-L359
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/rlp/Lib_RLPReader.sol#L356-L359
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/resolver/Lib_AddressManager.sol#L26
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/resolver/Lib_AddressManager.sol#L26
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/resolver/Lib_AddressManager.sol#L38
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/resolver/Lib_AddressManager.sol#L38
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/resolver/Lib_AddressManager.sol#L58
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/resolver/Lib_AddressManager.sol#L58


"OVM_DecompressionPrecompileAddress"

"OVM_ChainStorageContainer:SCC:batches"

"OVM_BondManager"

"OVM_StateCommitmentChain"

"OVM_CanonicalTransactionChain"

"OVM_FraudVerifier"

"OVM_Proposer"

"OVM_SafetyChecker"

"OVM_StateTransitionerFactory"

While this issue does not pose an immediate security risk, the approach taken can be considered error-

prone and difficult to maintain. Moreover, it is worth noting that the current code base has a number of

inconsistencies in how these keys are referenced, as described in "[N06] Inconsistent name

resolution".

Consider factoring out all mentioned constant strings to a single library, which can be then imported as

needed. This will ease maintenance and make the code more resilient to future changes.

[L18] Lack of allowance front-running mitigation in ERC20
contract

The UniswapV2ERC20 contract does not include the increaseAllowance and decreaseAllowance

functions, nowadays common in most ERC20 interfaces to help mitigate the allowance frontrunning

issue of the ERC20 standard.

While not strictly part of the ERC20 standard, consider including these two functions in the contract's

interface.

[L19] Lack of event emissions

In the OVM_ProxySequencerEntrypoint contract, the upgrade function does not emit an event

after a successful upgrade operation.

Consider emitting events after sensitive changes take place to facilitate tracking and notify off-chain

clients following the contracts' activity.

• 

• 

• 

• 

• 

• 

• 

• 

• 

https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/standards/UniswapV2ERC20.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/standards/UniswapV2ERC20.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.4.0/contracts/token/ERC20/ERC20.sol#L158-L192
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.4.0/contracts/token/ERC20/ERC20.sol#L158-L192
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.4.0/contracts/token/ERC20/ERC20.sol#L158-L192
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.4.0/contracts/token/ERC20/ERC20.sol#L158-L192
https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit
https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/predeploys/OVM_ProxySequencerEntrypoint.sol#L51
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/predeploys/OVM_ProxySequencerEntrypoint.sol#L51


[L20] Deployment risks

The following contracts have a public initializer function:

OVM_L1CrossDomainMessenger

Abs_L2DepositedToken

OVM_L1ETHGateway

OVM_DeployerWhitelist

OVM_ProxySequencerEntrypoint

In all cases, the first account to invoke the initializer is not authenticated and can set sensitive

parameters, which leaves them open to potential front-running attacks that could invalidate the

contracts. We understand that this is particularly relevant for the token bridge contracts, because the

Optimism team intends to provide a factory that programmatically creates the contracts and adds them

to a registry, so if a particular token bridge is invalidated, it may not be recoverable.

One reason for this pattern is that contracts may have circular deployment dependencies, which means

some contracts have to be deployed before their dependencies. Nevertheless, since contract addresses

are created deterministically, it should still be possible to predict all addresses before the deployment,

and pass them to the relevant constructors. Consider using this method where appropriate to mitigate

the risk of front-running during initial configuration transactions. Alternatively, consider implementing

access controls to the initializer functions.

Notes & Additional Information

[N01] Additional issues

During our audit, the Optimism team independently found a number of issues in the code base. We

briefly include them below for completeness.

The passMessageToL1 function of the OVM_L2ToL1MessagePasser contract is intended to be

called by the OVM_L2CrossDomainMessenger, which validates the message sender and nonce

before passing on the message. Although the function has no access controls, only messages

sent from the OVM_L2ToL1MessagePasser can be relayed on layer 1. However, an attacker can

use the L1-to-L2 message path to invoke the passMessageToL1 function from the 

OVM_L2CrossDomainMessenger with any parameters. This lets them send a message back up to

L1 that bypasses the message sender and nonce validations. The Optimism team has indicated

that they will remove the OVM_L2ToL1MessagePasser contract entirely, and use the 

sentMessages mapping in the OVM_L2CrossDomainMessenger instead.

• 

• 

• 

• 

• 

• 

• 

https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L1CrossDomainMessenger.sol#L45
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L1CrossDomainMessenger.sol#L45
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/Abs_L2DepositedToken.sol#L59
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/Abs_L2DepositedToken.sol#L59
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/OVM_L1ETHGateway.sol#L55
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/OVM_L1ETHGateway.sol#L55
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/predeploys/OVM_DeployerWhitelist.sol#L63
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/predeploys/OVM_DeployerWhitelist.sol#L63
https://github.com/ben-chain/contracts-v2/blob/bc2995d9f4f00fb369d1868e81af9197113aaab9/contracts/optimistic-ethereum/OVM/predeploys/OVM_ProxySequencerEntrypoint.sol#L37
https://github.com/ben-chain/contracts-v2/blob/bc2995d9f4f00fb369d1868e81af9197113aaab9/contracts/optimistic-ethereum/OVM/predeploys/OVM_ProxySequencerEntrypoint.sol#L37
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/OVM/precompiles/OVM_L2ToL1MessagePasser.sol#L34
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/OVM/precompiles/OVM_L2ToL1MessagePasser.sol#L34
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/OVM/bridge/messaging/Abs_BaseCrossDomainMessenger.sol#L65-L70
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L1CrossDomainMessenger.sol#L243
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L1CrossDomainMessenger.sol#L243
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L1CrossDomainMessenger.sol#L243
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L2CrossDomainMessenger.sol#L79
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L2CrossDomainMessenger.sol#L79
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L2CrossDomainMessenger.sol#L79
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L2CrossDomainMessenger.sol#L79
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/OVM/bridge/messaging/Abs_BaseCrossDomainMessenger.sol#L36
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/OVM/bridge/messaging/Abs_BaseCrossDomainMessenger.sol#L36


The logic in the _handleContractCreation function of the OVM_ExecutionManager contract

allows deploying potentially unsafe code. While it does validate the runtime code deployed, the

restriction is enforced after the code is already deployed, without reverting the state changes.

After running a legitimate fraud proof and reaching the post-execution state, the associated

State Manager still considers the Execution Manager as "authenticated". This would allow further

modifying state during post-execution.

An attacker can maliciously modify the context in which a fraud proof is run by first calling the 

run function of the OVM_ExecutionManager altering context-related variables (such as the 

isStatic flag), and then re-entering it during execution of a fraud proof.

Update: These issues were identified in the first audited commit. They are fixed in the latest audited

commit. Note that instead of removing the OVM_L2ToL1MessagePasser contract, the first issue was

addressed by recognizing and discarding L1-to-L2 cross domain messages directed at the 

OVM_L2ToL1MessagePasser contract.

[N02] Contracts do not compile with Solidity versions prior
to 0.7

Contracts throughout the code base explicitly allow to be compiled with Solidity versions lower than 0.8

and greater than 0.5, by setting its pragma statement to pragma solidity >0.5.0 <0.8.0; (see for

example the OVM_CanonicalTransactionChain contract). However, contracts that do not set explicit

visibility in their constructors were only allowed starting in Solidity 0.7, meaning that it will not be

possible to compile them with older versions.

Consider reviewing and updating the pragma statements of all contracts throughout the code base to

ensure they can actually be compiled with the expected versions.

[N03] Fragile default values in Merkle tree

The getMerkleTree function of Lib_MerkleTree library fills unbalanced trees with default values.

These value are chosen to simulate the effect of padding the input _elements with zero values to

ensure the number of elements is a power of 2. Although this implicitly introduces new elements into

the Merkle tree, they cannot be referenced in the corresponding verify function as long as their index

falls outside the acceptable bound. This behavior is acknowledged, noted in the function comments,

and respected throughout the code base.

Nevertheless, we understand it would be more gas-efficient and easier to reason about if the default

values were replaced with a constant value that provably has no known pre-image. Consider

introducing this simplification.

• 

• 

https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1041
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1041
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1102
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1080
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L155
https://github.com/ethereum-optimism/contracts/blob/18e128343731b9bde23812ce932e24d81440b6b7/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L155
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L3
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L3
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L65-L76
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L65-L76
https://docs.soliditylang.org/en/v0.7.0/070-breaking-changes.html#functions-and-events
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/utils/Lib_MerkleTree.sol#L41-L58
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/utils/Lib_MerkleTree.sol#L139-L142
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/utils/Lib_MerkleTree.sol#L15-L18


[N04] Gas inefficiencies

This is a non-comprehensive list of simple gas inefficiencies detected as a side-product of the audit for

the development team's consideration.

In the OVM_CanonicalTransactionChain contract:

The address of the Sequencer could be resolved before entering the loop to avoid unnecessary

external calls during execution of the appendQueueBatch function. Similarly, the address

referencing the queue should be resolved before entering the loop, then replacing the call to 

getQueueElement with _getQueueElement.

In the OVM_StateCommitmentChain contract:

The appendStateBatch function reads from storage the chain's total elements twice (in lines 

136 and 152) when it could do it once.

In the OVM_ExecutionManager contract:

The _createContract function reads from the messageContext.ovmADDRESS state variable

three times, when it could do it just once at the beginning of the function.

In the OVM_L1ETHGateway contract:

The _safeTransferETH function of the OVM_L1ETHGateway contract uses a new bytes(0) object

as a parameter when executing the call function. Using "" in place of new bytes(0) achieves

the same effect and saves gas. Alternatively, consider entirely replacing the custom 

_safeTransferETH function with the sendValue function available in OpenZeppelin Contracts.

[N05] Incomplete override

The Abs_L1TokenGateway abstract contract has a default amount of gas that is sent with the cross-

domain message. The intention is to allow descendant contracts to change this value as needed, but

the current code base does not support this.

Consider marking the getFinalizeDepositL2Gas function as virtual so it can be overridden.

Additionally, consider marking the default value as internal, so it is removed from the public API when

it is no longer in use.

[N06] Inconsistent name resolution

There are a few inconsistent name resolutions throughout the code base:

The onlyRelayer modifier of the OVM_L1CrossDomainMessenger contract resolves the name

"OVM_L2MessageRelayer", which should point to the OVM_L1MultiMessageRelayer contract.

• 

• 

• 

• 

• 

• 

https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L356-L357
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L213
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L213
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L358
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L747
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L747
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_StateCommitmentChain.sol#L136
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_StateCommitmentChain.sol#L152
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L847
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L847
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/OVM_L1ETHGateway.sol#L168
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/OVM_L1ETHGateway.sol#L168
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/OVM_L1ETHGateway.sol#L174
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/OVM_L1ETHGateway.sol#L174
https://docs.openzeppelin.com/contracts/3.x/api/utils#Address-sendValue-address-payable-uint256-
https://docs.openzeppelin.com/contracts/3.x/api/utils#Address-sendValue-address-payable-uint256-
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/Abs_L1TokenGateway.sol#L56
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/Abs_L1TokenGateway.sol#L100
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/Abs_L1TokenGateway.sol#L100
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L1CrossDomainMessenger.sol#L64
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L1CrossDomainMessenger.sol#L64
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L1MultiMessageRelayer.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L1MultiMessageRelayer.sol


The OVM_L1MultiMessageRelayer and OVM_L1ETHGateway contracts resolve the name 

"Proxy__OVM_L1CrossDomainMessenger", while the OVM_L2CrossDomainMessenger contract 

resolves the name "OVM_L1CrossDomainMessenger". Presumably, these point at the same

address.

The name "OVM_DecompressionPrecompileAddress" should resolve to the address of the 

OVM_ProxySequencerEntrypoint contract.

The OVM_StateCommitmentChain contract resolves the name "OVM_Proposer", but assigns it to a

local variable called sequencer. This is because the sequencer and proposer are expected to be

the same contract. However, in the interests of clarity, either the resolved name or the variable

name should be modified for consistency (as suggested in the informational note "[N31]

Naming issues").

[N07] Inconsistent use of named return variables

Named return variables are used inconsistently. For example, while some functions in the 

OVM_CanonicalTransactionChain contract name their return variables, others do not. Consider

removing all named return variables, explicitly declaring them as local variables, and adding the

necessary return statements where appropriate. This should improve both explicitness and readability

of the project.

[N08] Minimum nuisance gas per contract creation is
charged twice

The ovmCREATEEOA and safeCREATE functions, used for creating accounts in the 

OVM_ExecutionManager contract, follow a similar pattern to calculate nuisance gas:

Call the _initPendingAccount function (see lines 537 and 1098), which internally calls the 

_checkAccountLoad function, which in turn charges nuisance gas the first time the referenced

account is loaded. Here, the amount of nuisance gas charged includes the minimum gas

(dictated by the MIN_NUISANCE_GAS_PER_CONTRACT constant).

Call the _commitPendingAccount function (see lines 551 and 1125), which internally calls the 

_checkAccountChange function, which in turn charges nuisance gas the first time the referenced

account is changed. Here, the amount of nuisance gas charged also includes 

MIN_NUISANCE_GAS_PER_CONTRACT (as in the first case).

This means that during account creation, the minimum amount of nuisance gas tracked in the 

MIN_NUISANCE_GAS_PER_CONTRACT constant is charged twice. This appears to be unnecessary since

during fraud proof verification the code for the created account would only need to be provided once.

Yet it could also be argued that in the fraud proof verification the pre-state of the empty account would

need to be proved as well, and that is why the MIN_NUISANCE_GAS_PER_CONTRACT is charged twice.

• 

• 

1. 

2. 

https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L1MultiMessageRelayer.sol#L58
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L1MultiMessageRelayer.sol#L58
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/OVM_L1ETHGateway.sol#L64
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/OVM_L1ETHGateway.sol#L64
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L2CrossDomainMessenger.sol#L127
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L1137
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L1137
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_StateCommitmentChain.sol#L321
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L503
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L503
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1067
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1067
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L537
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1098
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1333
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L551
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1125
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1363


To avoid confusions, consider explicitly specifying and documenting the intended behavior, including

related unit tests if appropriate.

[N09] Redundant validations during state batch deletion

The deleteStateBatch function of the OVM_StateCommitmentChain contract verifies that the passed

batch header is valid using the _isValidBatchHeader function, and after additional checks, it executes

the internal _deleteBatch function. Within the _deleteBatch function, the logic checks that both the

index and batch header are valid. Yet these last two validations are redundant, since as mentioned, the 

_isValidBatchHeader function covers them both and was already executed prior to the internal call to

_deleteBatch.

To favor simplicity and gas-efficiency, consider removing these unnecessary validations.

[N10] Contract creation can revert upon failure

Both ovmCREATE and ovmCREATE2 opcodes can revert during execution (instead of returning 0 upon

failure as specified in the EVM). This is due to the fact that the code is validating the deployer is

allowed at the beginning of the opcodes execution (see calls to the _checkDeployerAllowed function 

here and here), instead of doing it inside the safeCREATE function, where similar validations are

applied that do not result in a revert upon failure.

We are raising this peculiarity of the current version of the OVM as an informative note for

completeness, since we understand that the development team is fully aware of this undocumented

behavioral difference with EVM, and is planning to fix it by removing the deployer whitelist in the short

term. Should that not be the case, consider this note of higher priority and explicitly document the

described behavior in external documentation to raise user awareness.

[N11] Typographical errors

In Lib_MerkleTree.sol:

In line 117, "sibline" should say "sibling".

In Lib_MerkleTrie.sol:

In line 275, "31" should say "32".

In Lib_Math.sol:

In line 14, "minumum" should say "minimum".

In iOVM_ChainStorageContainer.sol:

In line 104, "meaing" should say "meaning".

• 

• 

• 

• 

https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_StateCommitmentChain.sol#L167
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_StateCommitmentChain.sol#L167
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_StateCommitmentChain.sol#L179
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_StateCommitmentChain.sol#L179
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_StateCommitmentChain.sol#L188
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_StateCommitmentChain.sol#L374-L382
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_StateCommitmentChain.sol#L179
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L385
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L385
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L423
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L423
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L402
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L441
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1067
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1067
https://community.optimism.io/docs/protocol/evm-comparison.html#behavioral-differences
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/utils/Lib_MerkleTree.sol#L117
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L275
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/utils/Lib_Math.sol#L14
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/iOVM/chain/iOVM_ChainStorageContainer.sol#L104


In OVM_CanonicalTransactionChain.sol:

In line 344, "minnet" should say "mainnet".

In line 973, "que" should say "queue".

In line 1011, "elemtent" should say "element".

In OVM_CrossDomainEnabled.sol:

In line 14, "recieve" should say "receive".

In OVM_L2ToL1MessagePasser.sol:

In line 9, "facilitates" is misspelled. It also includes the repeated phrase "of the".

In Abs_L1TokenGateway.sol:

In line 128, "recipient's" is misspelled.

In OVM_L1ERC20Gateway.sol:

In line 18, "takes" should say "take".

In OVM_ExecutionManager.sol:

In line 168, "awlways" should say "always".

In lines 191, 202, 213, and 1701, "minnet" should say "mainnet".

In lines 1804, 1809, 1814, "unnecessary the SSTORE" should say "the unnecessary SSTORE".

In OVM_ECDSAContract.sol:

In lines 142, "transfer" is misspelled.

In OVM_FraudVerifier.sol:

In line 210, "minnet" should say "mainnet".

In Lib_RLPReader.sol:

In lines 384 and 410, "a address" should say "an address".

[N12] Negative overflow of uint256 type

To favor readability, in line 1890 of OVM_ExecutionManager.sol consider replacing the negative

overflow operation of an uint256 value with the expression type(uint256).max.

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L344
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L973
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L1011
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/bridge/OVM_CrossDomainEnabled.sol#L14
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/predeploys/OVM_L2ToL1MessagePasser.sol#L9
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/Abs_L1TokenGateway.sol#L128
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/OVM_L1ERC20Gateway.sol#L18
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L168
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L191
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L202
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L213
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1701
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1804
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1809
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1814
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/accounts/OVM_ECDSAContractAccount.sol#L142
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_FraudVerifier.sol#L210
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/rlp/Lib_RLPReader.sol#L384
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/rlp/Lib_RLPReader.sol#L410
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1890
https://docs.soliditylang.org/en/v0.7.6/units-and-global-variables.html#type-information
https://docs.soliditylang.org/en/v0.7.6/units-and-global-variables.html#type-information


[N13] Unnecessary return statement

Consider removing the return keyword from the setGlobalMetadata function of the 

OVM_ChainStorageContainer contract, as the setExtraData function of the Lib_RingBuffer library

being called does not return any value.

[N14] Unused imports

To improve readability and avoid confusion, consider removing the following unused imports.

In the OVM_StateCommitmentChain contract, the iOVM_FraudVerifier interface.

In the OVM_ExecutionManager contract, the OVM_ECDSAContractAccount and 

OVM_DeployerWhitelist contracts.

In the OVM_L2DepositedERC20 contract, the iOVM_L1TokenGateway interface.

In the OVM_ETH contract, the Lib_AddressResolver contract.

In the OVM_StateTransitioner contract, the iOVM_BondManager interface.

In the Lib_OVMCodec library, the Lib_BytesUtils library.

[N15] Unused events

The iOVM_L2ToL1MessagePasser interface defines the L2ToL1Message event, which is never emitted in

the child contract OVM_L2ToL1MessagePasser.

To avoid confusion and favor simplicity, consider removing all definitions of events that are not

expected to be emitted.

[N16] Unused functions

Functions toUint24, toUint8 and toAddress of the Lib_BytesUtils library are never used, and can

therefore be removed.

[N17] Transaction hashes might not be unique in the
Canonical Transaction Chain

The enqueue function of the OVM_CanonicalTransactionChain contract constructs transaction hashes

with the caller's address, the L2 target, the transaction's gas limit and its data. Since this is not enough

to ensure uniqueness of hashes (that is, it could be possible to construct two transactions that result in

the same hash), these transactions are instead identified by their position in the queue. However, this

internal subtlety of the Canonical Transaction Chain is not explicitly documented, and might lead to

• 

• 

• 

• 

• 

• 

https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_ChainStorageContainer.sol#L87
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_ChainStorageContainer.sol#L87
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/utils/Lib_RingBuffer.sol#L248
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/utils/Lib_RingBuffer.sol#L248
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_StateCommitmentChain.sol#L11
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_StateCommitmentChain.sol#L11
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L18
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L18
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L20
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L20
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/OVM_L2DepositedERC20.sol#L6
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/OVM_L2DepositedERC20.sol#L6
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/predeploys/OVM_ETH.sol#L5
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/predeploys/OVM_ETH.sol#L5
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_StateTransitioner.sol#L18
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_StateTransitioner.sol#L18
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/codec/Lib_OVMCodec.sol#L8
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/codec/Lib_OVMCodec.sol#L8
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/iOVM/predeploys/iOVM_L2ToL1MessagePasser.sol#L13-L17
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/iOVM/predeploys/iOVM_L2ToL1MessagePasser.sol#L13-L17
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/predeploys/OVM_L2ToL1MessagePasser.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/predeploys/OVM_L2ToL1MessagePasser.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/utils/Lib_BytesUtils.sol#L142
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/utils/Lib_BytesUtils.sol#L142
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/utils/Lib_BytesUtils.sol#L154
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/utils/Lib_BytesUtils.sol#L154
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/utils/Lib_BytesUtils.sol#L166
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/utils/Lib_BytesUtils.sol#L166
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L256
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L256
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L299-L306
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol#L1168-L1177


errors in off-chain services tracking transactions in the Canonical Transaction Chain, since transaction

hashes are commonly assumed to be unique.

Consider including developer-friendly documentation stating how transaction hashes in the Canonical

Transaction Chain are constructed, and how they should not be relied on to uniquely identify

transactions.

[N18] Cross-domain messengers can be impersonated

The relayMessage functions of the OVM_L1CrossDomainMessenger and OVM_L2CrossDomainMessenger

contracts allow relaying arbitrary cross-domain messages. Ultimately, this means that it is possible for

anyone to make these contracts execute arbitrary calls (see calls here and here). Therefore, there are

two scenarios developers should consider when building and integrating bridges between layer 1 and 2.

Aiming for simplicity, in the following we explain both scenarios starting on layer 1 - yet a similar

behavior can be seen in the opposite direction.

The simplest case would be sending a message from a user-controlled layer 1 account to any layer 2

account. In practice, this will allow the layer 1 account to make the OVM_L2CrossDomainMessenger

contract call any target address with arbitrary data. Therefore, layer 2 accounts should be aware that

they can receive arbitrary calls from the OVM_L2CrossDomainMessenger contract that are fully

controlled by layer 1 accounts. For example, this allows any layer 1 account to steal any tokens

deposited in the OVM_L2CrossDomainMessenger contract, or maliciously register the 

OVM_L2CrossDomainMessenger contract in the ERC1820Registry contract. It must be noted that during

the call from the OVM_L2CrossDomainMessenger contract to the target address, the target address can

query the xDomainMessageSender function to inspect the address of the layer 1 account that

originated the message.

Going further, now into the second case, a subtle behavior of the OVM_L1CrossDomainMessenger and 

OVM_L2CrossDomainMessenger contracts allows anyone not only to send messages via these contracts,

but also to originate messages from them. The execution steps to originate an L2-to-L1 message from

the OVM_L2CrossDomainMessenger would develop as follows:

A user-controlled account sends a message from layer 1 calling the sendMessage function of the 

OVM_L1CrossDomainMessenger contract. The target of this message should be the 

OVM_L2CrossDomainMessenger contract, and the message should be an abi-encoded call to the

target's sendMessage function, including the arbitrary data the user wants the 

OVM_L2CrossDomainMessenger contract to send to layer 1.

The L1-to-L2 message sent by the user is enqueued in the Canonical Transaction Chain as a

regular OVM transaction.

In layer 2, the relayMessage function of the OVM_L2CrossDomainMessenger contract is called to

relay the user's message. Following how the message was constructed, this will trigger a call

from the OVM_L2CrossDomainMessenger contract to its own sendMessage function. In other

words, the OVM_L2CrossDomainMessenger contract sends a message from L2 to L1 with target

and data arbitrarily decided by the user in (1).

1. 

2. 

3. 

4. 

https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L1CrossDomainMessenger.sol#L144
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L1CrossDomainMessenger.sol#L144
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L2CrossDomainMessenger.sol#L49
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L2CrossDomainMessenger.sol#L49
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L1CrossDomainMessenger.sol#L118
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L2CrossDomainMessenger.sol#L88
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L2CrossDomainMessenger.sol#L88
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/predeploys/ERC1820Registry.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/predeploys/ERC1820Registry.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/Abs_BaseCrossDomainMessenger.sol#L46
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/Abs_BaseCrossDomainMessenger.sol#L46
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/Abs_BaseCrossDomainMessenger.sol#L57
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/Abs_BaseCrossDomainMessenger.sol#L57
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/Abs_BaseCrossDomainMessenger.sol#L58
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/Abs_BaseCrossDomainMessenger.sol#L58
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L2CrossDomainMessenger.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L2CrossDomainMessenger.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/Abs_BaseCrossDomainMessenger.sol#L59
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/Abs_BaseCrossDomainMessenger.sol#L59
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L1CrossDomainMessenger.sol#L288-L292
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L2CrossDomainMessenger.sol#L49
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L2CrossDomainMessenger.sol#L49
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L2CrossDomainMessenger.sol#L88
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/Abs_BaseCrossDomainMessenger.sol#L57
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/Abs_BaseCrossDomainMessenger.sol#L57


After the fraud proof window is over, the L2-to-L1 message sent by the 

OVM_L2CrossDomainMessenger contract is relayed in layer 1.

The target contract in layer 1 receives a message with the user-controlled data. Should the

target address query the xDomainMessageSender function to inspect the address of the layer 2

account that originated the message, it would receive the address of the 

OVM_L2CrossDomainMessenger contract.

The actual consequences of the described behaviors will ultimately depend on the contracts receiving

these arbitrary calls, and that is why we are only reporting this as an informative note. Developers

should be fully aware of these scenarios and be ready to implement the necessary defensive measures

to mitigate impact on their systems. We suggest the Optimism team to include specific developer-

friendly documentation highlighting this note, so as to raise awareness of the subtleties of cross-

domain communication.

[N19] Subtleties of calling contracts under construction and
abstracted EOAs

In the EVM, calling accounts with no executable code (that is, contracts during construction or

externally owned accounts) results in an immediate halt with a STOP opcode (see subsection 9.4 of the

yellow paper), and the call is considered successful. In the OVM, this behavior is not exactly replicated,

due to some fundamental differences between the EVM and the OVM.

Calling abstracted EOAs

The OVM offers native account abstraction. In other words, the only type of account is smart contracts,

and the closest one can get to the behavior of EOAs is implemented in the OVM_ECDSAContractAccount

contract. As a result, "calling an EOA" is translated to calling a specific instance of this contract, and

any call that does not match the selector of the execute function will result in an out-of-gas error.

Calling contracts under construction

In the L1 sandboxed execution environment of the OVM, calling a contract under construction results in

a call to the zero address (instead of a call to the address of the contract). This is due to the fact that

the internal _callContract function of the OVM_ExecutionManager contract resolves the specified

target address to the actual address of the contract in L1, using the _getAccountEthAddress function.

This results in a call to the getAccountEthAddress function of the OVM_StateManager contract, which

will return the zero address, because the contract under construction has not been yet committed to

the state. More specifically, during a creation operation an account is first initialized as pending without

setting its L1 address, then created, and finally committed. Therefore any address resolution before the

account is committed will resolve to the zero address. The call to the zero address will be successful,

and execution will simply continue. Off-chain services tracing the internal execution of fraud proof

verifications might find this behavior relevant, as they will see a call to the zero address where they

would have expected a call to a contract under construction.

5. 

https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/Abs_BaseCrossDomainMessenger.sol#L46
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/Abs_BaseCrossDomainMessenger.sol#L46
https://ethereum.github.io/yellowpaper/paper.pdf#subsection.9.4
https://ethereum.github.io/yellowpaper/paper.pdf#subsection.9.4
https://community.optimism.io/docs/protocol/evm-comparison.html#native-account-abstraction
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/accounts/OVM_ECDSAContractAccount.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/accounts/OVM_ECDSAContractAccount.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/accounts/OVM_ECDSAContractAccount.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/accounts/OVM_ECDSAContractAccount.sol#L46
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/accounts/OVM_ECDSAContractAccount.sol#L46
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1512-L1519
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L892
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L892
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L918
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L918
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_StateManager.sol#L242
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_StateManager.sol#L242
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1098
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1102
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_ExecutionManager.sol#L1125


It should be noted that both scenarios described were raised as issues of Medium severity in our

November 2020 report as "[M03] Call to contract in construction results in call to the zero

address" and "[M04] Calls to abstracted EOA accounts may result in Out of Gas error". Taking

into account that we did not receive specific feedback on those issues, and that the behavior of the

system remains, we assume that the Optimism team has acknowledged these scenarios and consider

them intended. Therefore, we are only describing them in this informative note for completeness, and

to suggest explicitly documenting them either with inline comments, docstrings, external developer

documentation or system specification if the Optimism team considers it appropriate.

[N20] Repeated authentication logic in State Manager

The isAuthenticated function of the OVM_StateManager contract can be used to validate whether a

given address is allowed to write into the contract's state. The same functionality is implemented in the

authenticated modifier.

To avoid code repetition, consider modifying the authenticated modifier so that it calls the 

isAuthenticated function to determine if the caller is authenticated. This note can be disregarded

should the current implementation be more favorable in terms of gas costs.

[N21] Not using available bytes32 utilities

To favor simplicity and favor reusability, consider replacing the operations to cast from and to bytes32

types in lines 76, 86, 100 and 110 of OVM_ProxySequencerEntrypoiny.sol with the available utilities

in the Lib_Bytes32Utils library.

[N22] Missing operations in Execution Manager wrapper
library

The Lib_SafeExecutionManagerWrapper library offers functions to facilitate writing OVM safe code

that can be compiled using the standard Solidity compiler. However, it is missing a number of wrappers

for OVM operations, namely:

ovmCREATE2

ovmSTATICCALL

ovmEXTCODEHASH

ovmEXTCODECOPY

ovmL1TXORIGIN

ovmL1QUEUEORIGIN

ovmGASLIMIT

• 

• 

• 

• 

• 

• 

• 

• 

https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_StateManager.sol#L87
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_StateManager.sol#L87
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_StateManager.sol#L69
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_StateManager.sol#L69
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/predeploys/OVM_ProxySequencerEntrypoint.sol#L76
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/predeploys/OVM_ProxySequencerEntrypoint.sol#L86
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/predeploys/OVM_ProxySequencerEntrypoint.sol#L100
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/predeploys/OVM_ProxySequencerEntrypoint.sol#L110
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/utils/Lib_Bytes32Utils.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/utils/Lib_Bytes32Utils.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/wrappers/Lib_SafeExecutionManagerWrapper.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/wrappers/Lib_SafeExecutionManagerWrapper.sol


ovmNUMBER

ovmTIMESTAMP

Consider including wrapper functions for them in the Lib_SafeExecutionManagerWrapper library.

[N23] Unnecessary standalone contract to relay multiple
messages

The OVM_L1MultiMessageRelayer contract implements a single function batchRelayMessages that

forwards multiple cross-domain messages to the OVM_L1CrossDomainMessenger contract. To favor

simplicity, this function could be moved to the OVM_L1CrossDomainMessenger contract (where it should

be marked with the onlyRelayer modifier).

[N24] Data returned by relayed message is ignored

The relayMessage function of the OVM_L2CrossDomainMessenger contract executes an ovmCALL to the

message's target. While the call's success flag is validated to determine whether the message can be

considered successful, the returned data is never stored nor logged. As a consequence, relevant

returned data from relayed messages will not be accessible after a message is relayed. The described

behavior also occurs in the relayMessage function of the OVM_L1CrossDomainMessenger contract.

Should this be the intended behavior of the relayMessage functions, consider documenting it in the

functions' docstrings. Otherwise, consider including a mechanism to retrieve the returned data of

relayed messages, which could include storing the data in storage, or logging it using an event.

[N25] Duplicated code in cross-domain messenger
contracts

The relayMessage functions of the OVM_L1CrossDomainMessenger and OVM_L2CrossDomainMessenger

contracts behave in a similar way and share a non-trivial amount of duplicated logic.

To reduce code duplication and favor reusability, consider abstracting away repeated logic to an

internal function of the Abs_BaseCrossDomainMessenger parent contract.

[N26] Duplicated code for memory copy utility

The _copy function of the Lib_RLPReader library and _memcpy function of the Lib_RLPWriter serve a

similar purpose: copying pieces of memory to other locations. To reduce duplicated logic and ease

maintenance, consider defining a single memory copy utility function, and reusing it throughout the

code base. Alternatively, to favor a simpler implementation, consider using the identity precompile

contract at address 0x0000000000000000000000000000000000000004 to copy pieces of memory.

• 

https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L1MultiMessageRelayer.sol#L22
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L1MultiMessageRelayer.sol#L22
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L1CrossDomainMessenger.sol#L63
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L1CrossDomainMessenger.sol#L63
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L2CrossDomainMessenger.sol#L49
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L2CrossDomainMessenger.sol#L49
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L2CrossDomainMessenger.sol#L88
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L2CrossDomainMessenger.sol#L88
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L2CrossDomainMessenger.sol#L88
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L2CrossDomainMessenger.sol#L93
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L1CrossDomainMessenger.sol#L118
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L1CrossDomainMessenger.sol#L118
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L1CrossDomainMessenger.sol#L83
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L1CrossDomainMessenger.sol#L83
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L2CrossDomainMessenger.sol#L49
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/OVM_L2CrossDomainMessenger.sol#L49
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/Abs_BaseCrossDomainMessenger.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/Abs_BaseCrossDomainMessenger.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/rlp/Lib_RLPReader.sol#L584
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/rlp/Lib_RLPReader.sol#L584
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/rlp/Lib_RLPWriter.sol#L231
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/rlp/Lib_RLPWriter.sol#L231


[N27] Redundant check when proving contract state

Within the proveContractState function of the OVM_StateTransitioner contract, there is a require

statement that checks two conditions. The first condition, hasAccount, checks whether the account's

code hash is non-zero. The second condition, hasEmptyAccount, checks that the account's code hash

matches the EMPTY_ACCOUNT_CODE_HASH hash.

Since the EMPTY_ACCOUNT_CODE_HASH is non-zero, the second condition implies the first one. Therefore,

consider removing the call to hasAccount.

[N28] Base contract not marked as abstract

Contracts that are not intended to be instantiated directly, such as OVM_CrossDomainEnabled, should

be marked as abstract to favor readability and avoid unintended usage.

[N29] Inconsistent coding style

Some instances of inconsistent coding style were identified in the code base. Specifically:

While most internal and private functions explicitly denote their visibility by prepending their

names with an underscore, functions getCrossDomainMessenger and sendCrossDomainMessage

of the OVM_CrossDomainEnabled contract fail to do so.

To favor readability, consider always following a consistent style throughout the code base. We suggest

using Solidity's Style Guide as a reference.

[N30] Lack of explicit visibility in state variables

The following state variables and constants are implicitly using the default visibility.

In the OVM_ECDSAContractAccount contract:

The EXECUTION_VALIDATION_GAS_OVERHEAD and ETH_ERC20_ADDRESS constants.

In the OVM_ProxyEOA contract:

The IMPLEMENTATION_KEY constant.

In the Abs_L2DepositedToken contract:

The DEFAULT_FINALIZE_WITHDRAWAL_L1_GAS constant

To favor readability, consider explicitly declaring the visibility of all state variables and constants.

• 

• 

• 

• 

https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_StateTransitioner.sol#L185
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_StateTransitioner.sol#L185
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_StateTransitioner.sol#L198-L199
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_StateManager.sol#L169
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_StateManager.sol#L169
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_StateManager.sol#L179
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_StateManager.sol#L179
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_StateManager.sol#L187
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_StateManager.sol#L187
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_StateManager.sol#L198
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_StateManager.sol#L198
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_StateManager.sol#L198
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_StateManager.sol#L28
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/execution/OVM_StateManager.sol#L28
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_StateTransitioner.sol#L198
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/verification/OVM_StateTransitioner.sol#L198
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/bridge/OVM_CrossDomainEnabled.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/bridge/OVM_CrossDomainEnabled.sol
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/bridge/OVM_CrossDomainEnabled.sol#L58
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/bridge/OVM_CrossDomainEnabled.sol#L58
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/bridge/OVM_CrossDomainEnabled.sol#L74
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/libraries/bridge/OVM_CrossDomainEnabled.sol#L74
https://solidity.readthedocs.io/en/latest/style-guide.html
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/accounts/OVM_ECDSAContractAccount.sol#L32-L33
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/accounts/OVM_ProxyEOA.sol#L23
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/accounts/OVM_ProxyEOA.sol#L23
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/Abs_L2DepositedToken.sol#L85
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/tokens/Abs_L2DepositedToken.sol#L85


[N31] Naming issues

To favor explicitness and readability, several parts of the contracts may benefit from better naming. Our

suggestions are:

The FRAUD_PROOF_WINDOW state variable should be renamed to 

FRAUD_PROOF_WINDOW_IN_SECONDS.

The SEQUENCER_PUBLISH_WINDOW state variable should be renamed to 

SEQUENCER_PUBLISH_WINDOW_IN_SECONDS.

In the _appendBatch function, a local variable sequencer is assigned the address resolved for

the OVM_Proposer key. As the proposer might not be the sequencer (their roles having been split

in PR#252), the local variable name should be modified to avoid confusion.

[N32] Implicit casting operations

The sendMessage function of the Abs_BaseCrossDomainMessenger contract implicitly upcasts its

_gasLimit parameter from uint32 to uint256 when it's passed to the call to 

_sendXDomainMessage.

The execute function of the OVM_ECDSAContractAccount contract implicitly casts a uint64

number to uint256 when validating that the transaction's nonce matches the expected one.

For added readability, consider making casting operations explicit where possible.

Conclusions

4 critical and 4 high severity issues were found. Several changes and recommendations were proposed

to reduce the code's attack surface and improve its overall quality. 

• 

• 

• 

• 

• 

https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_StateCommitmentChain.sol#L36
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_StateCommitmentChain.sol#L36
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_StateCommitmentChain.sol#L37
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_StateCommitmentChain.sol#L37
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_StateCommitmentChain.sol#L321
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/chain/OVM_StateCommitmentChain.sol#L321
https://github.com/ethereum-optimism/contracts/pull/252
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/Abs_BaseCrossDomainMessenger.sol#L57
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/Abs_BaseCrossDomainMessenger.sol#L57
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/Abs_BaseCrossDomainMessenger.sol#L60
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/Abs_BaseCrossDomainMessenger.sol#L60
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/Abs_BaseCrossDomainMessenger.sol#L60
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/Abs_BaseCrossDomainMessenger.sol#L75
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/Abs_BaseCrossDomainMessenger.sol#L75
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/bridge/messaging/Abs_BaseCrossDomainMessenger.sol#L75
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/accounts/OVM_ECDSAContractAccount.sol#L46
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/accounts/OVM_ECDSAContractAccount.sol#L46
https://github.com/ben-chain/contracts-v2/blob/a935e276f5620b40802b52721e3474232e458f72/contracts/optimistic-ethereum/OVM/accounts/OVM_ECDSAContractAccount.sol#L81

	Summary
	System overview
	Privileged roles
	Update
	Critical severity
	[C01] Possible state manipulation after execution of transactions with invalid gas limit
	[C02] Partially shared keys with EXTENSION nodes mishandled
	[C03] Unbounded nuisance gas
	[C04] Valid L1-to-L2 queue transactions may be proven fraudulent spoofing queue origin

	High severity
	[H01] Valid transactions cannot be enqueued
	[H02] Unhandled transfer failures
	[H03] Relayers may not receive transaction fees
	[H04] Irrelevant proof contributions are accepted
	[H05] Repeatedly exceeding nuisance gas limit

	Medium severity
	[M01] Potential mismatch in allowed gas limit for sequenced and queued transactions
	[M02] Pre-state root and transaction may not uniquely identify transitions
	[M03] Initial state root cannot be challenged
	[M04] Sequencer entrypoint contracts ignore success flags and returned data
	[M05] Nuisance gas left is not reduced to zero when operation exceeds budget

	Low severity
	[L01] Appending transactions to the Canonical Transaction Chain in specific blocks might unexpectedly fail
	[L02] Inaccessible code when retrieving Merkle roots
	[L03] Lack of input validations
	[L04] Merkle tree elements are overwritten
	[L05] Misleading and / or erroneous docstrings and comments
	[L06] Missing and / or incomplete docstrings
	[L07] Undocumented literal values
	[L08] Unspecified behavior of OVM gas refund for revert flags
	[L09] Nuisance gas proportional to code size is charged unnecessarily when changing an account
	[L10] Unnecessary handling of single byte returned data
	[L11] Incorrect state transitioner index
	[L12] Inconsistent and error-prone storage references in proxy contracts
	[L13] Inconsistent key slicing when computing trie root
	[L14] Branch node modification in Merkle Trie may deviate from specification
	[L15] Unnecessary use of assembly
	[L16] Incorrect parsing of booleans in RLP library
	[L17] Lookup key strings are not centrally defined
	[L18] Lack of allowance front-running mitigation in ERC20 contract
	[L19] Lack of event emissions
	[L20] Deployment risks

	Notes & Additional Information
	[N01] Additional issues
	[N02] Contracts do not compile with Solidity versions prior to 0.7
	[N03] Fragile default values in Merkle tree
	[N04] Gas inefficiencies
	[N05] Incomplete override
	[N06] Inconsistent name resolution
	[N07] Inconsistent use of named return variables
	[N08] Minimum nuisance gas per contract creation is charged twice
	[N09] Redundant validations during state batch deletion
	[N10] Contract creation can revert upon failure
	[N11] Typographical errors
	[N12] Negative overflow of uint256 type
	[N13] Unnecessary return statement
	[N14] Unused imports
	[N15] Unused events
	[N16] Unused functions
	[N17] Transaction hashes might not be unique in the Canonical Transaction Chain
	[N18] Cross-domain messengers can be impersonated
	[N19] Subtleties of calling contracts under construction and abstracted EOAs
	Calling abstracted EOAs
	Calling contracts under construction

	[N20] Repeated authentication logic in State Manager
	[N21] Not using available bytes32 utilities
	[N22] Missing operations in Execution Manager wrapper library
	[N23] Unnecessary standalone contract to relay multiple messages
	[N24] Data returned by relayed message is ignored
	[N25] Duplicated code in cross-domain messenger contracts
	[N26] Duplicated code for memory copy utility
	[N27] Redundant check when proving contract state
	[N28] Base contract not marked as abstract
	[N29] Inconsistent coding style
	[N30] Lack of explicit visibility in state variables
	[N31] Naming issues
	[N32] Implicit casting operations

	Conclusions

