

Optimism
Security Assessment
October 30th 2020

Prepared For:
Ben Jones | Optimism
ben@optimism.io

Prepared By:
Gustavo Grieco | Trail of Bits
gustavo.grieco@trailofbits.com

Natalie Chin | Trail of Bits
natalie.chin@trailofbits.com

Dominik Teiml | Trail of Bits
dominik.teiml@trailofbits.com

mailto:ben@optimism.io
mailto:gustavo.grieco@trailofbits.com
mailto:natalie.chin@trailofbits.com
mailto:dominik.teiml@trailofbits.com

Executive Summary

Project Dashboard

Code Maturity Evaluation

Engagement Goals

Coverage

Automated Testing and Verification
Automated Testing with Echidna

Recommendations Summary
Short term
Long term

Findings Summary
1. SafetyChecker allows deployment of bytecode with unsafe instructions
2. The owner of the AddressManager contract can backdoor any contract
3. No access control in appendStateBatch allows to block proof verification
4. Integer overflow is possible while checking fraud proof window
5. Result of target.call(msg) execution is ignored
6. Re-entrancy risk in message passing contracts
7. Downcasting of integer can lead to incorrect update of state variable
8. Lib_MerkleUtils.verify accepts empty proofs
9. Denial-of-service protections in enqueue can be ineffective
10. Lib_TimeboundRingBuffer.push incorrectly updates deletionOffset
11. Allowing multiple message passing deployments may result in unexpected behavior
12. Insufficient Logging
13. Any user can create backdoored OVM_StateTransitioner contracts
14. Fraud verification allows any transaction to be used regardless of the state root
15. Sequencer calls to append new batches can be front-runned
16. Without extensive contract documentation the codebase is error-prone
17. _verifyQueueTransaction uses incorrect variable in its body
18. appendSequencerBatch reverts if queue is empty
19. Monotonicity of L2’s timestamp and block number can be violated
20. Fraud verification reverts if submitted within the force inclusion period

A. Vulnerability Classifications

B. Code Maturity Classifications

C. Code Quality Recommendations

© 2020 Trail of Bits Optimism OVM Assessment | 1

Executive Summary
From October 12 through October 30, 2020, Optimism engaged Trail of Bits to review the
security of the OVM. Trail of Bits conducted this assessment over the course of 6
person-weeks with two engineers working from f6f5f3a .

The first week, we focused on gaining an understanding of the codebase. We reviewed the
Safety Checker and message passing contracts against the most common Solidity flaws,
and started to look how to perform property-based testing in the codebase.
In the second week, we focused on the detection of high-severity issues related to fraud
protection. We continued reviewing the message passing contracts, and started looking
into the rollup contracts and lower-level libraries. In the final week we reviewed the most
complex interactions between the components and privileged users like the sequencer.

Our review resulted in 20 findings ranging from high to informational severity. Many of the
high-severity issues are of low difficulty and would allow an attacker to subvert or disrupt
the expected behavior of the OMV, such as:

● Incorrect implementation of safety checks when deploying contracts (TOB-OVM-001)
● Lack of proper access control for certain on-chain components (TOB-OVM-003 ,

TOB-OVM-013)
● Incorrect or invalid computation of arithmetic code (TOB-OVM-004 , TOB-OVM-007 ,

TOB-OVM-010)
● Insufficient validation of empty Merkle tree proofs (TOB-OVM-008)
● Incorrect implementation of the fraud verification procedure (TOB-OVM-014 ,

TOB-OVM-017 , TOB-OVM-020).

We also found the contracts were not robust against different types of denial-of-service
attacks either using reentrancy (TOB-OVM-006), transaction spamming (TOB-OVM-009),
front-running (TOB-OVM-015)

Appendix C contains additional code quality issues.

Overall, OVM represents a significant work in progress—it’s a complex codebase with many
interacting components. Most of these components lack documentation (TOB-OVM-016)
and many edge cases are untested (TOB-OVM-008).

Trail of Bits recommends addressing the findings presented in this report. We also
recommend a feature freeze until the existing features are properly documented and their
assumptions tested in depth. Finally, due to the prevalence of high-severity, low-difficulty
findings, we recommend additional focused security reviews once the associated
specification is written.

© 2020 Trail of Bits Optimism OVM Assessment | 2

https://github.com/ethereum-optimism/contracts-v2/tree/f6f5f3a63bc99b4e9ab26b51db7206d22213c406

Project Dashboard
Application Summary

Name Optimism

Version f6f5f3a

Type Solidity

Platforms Ethereum

Engagement Summary

Dates October 12 through October 30, 2020

Method Whitebox

Consultants Engaged 3

Level of Effort 6 person-weeks

Vulnerability Summary

Total High-Severity Issues 9 ◼◼◼◼◼◼◼◼◼

Total Medium-Severity Issues 4 ◼◼◼◼

Total Low-Severity Issues 5 ◼◼◼◼◼

Total Informational-Severity Issues 2 ◼◼

Total 20

Category Breakdown

Data Validation 12 ◼◼◼◼◼◼◼◼◼◼◼◼

Access Controls 3 ◼◼◼

Undefined Behavior 4 ◼◼◼◼

Auditing and Logging 1 ◼

Total 20

© 2020 Trail of Bits Optimism OVM Assessment | 3

https://github.com/ethereum-optimism/contracts-v2/tree/f6f5f3a63bc99b4e9ab26b51db7206d22213c406

Code Maturity Evaluation
Category Name Description

Access Controls Weak. Lack of specification on where access control is really needed
caused several issues. (TOB-OVM-003 , TOB-OVM-013)

Arithmetic Weak. Lack of industry-standard approach to avoid integer
overflows and extensive usage of unsafe downcastings
(TOB-OVM-004 , TOB-OVM-007).

Assembly Use Weak. Assembly code is used in several components. While in some
cases is justified because Solidity does not allow some operation,
most of the cases are gas optimizations of code that can be
expressed within the language.

Decentralization Weak. The owner of the contract has the power to modify the
behavior of important components (TOB-OVM-002). Additionally,
the sequencer user has the privilege to insert transactions at
arbitrary points of the queue. There is no clear documentation on
the privileges and roles of each of these users.

Upgradeability Weak. No explicit upgradeability procedure, but the Address
Manager contract could be used for that. If the ownership of that
contract is renounced, the components will be immutable, but there
is no documentation about this procedure.

Function
Composition

Moderate. The code is divided into folders with contracts grouped
according to their functionality. The use of Solidity inheritance and
libraries correctly separates different layers of abstraction.
However, the lack of extensive documentation and careful testing
makes the code more difficult to review than expected.

Front-Running Weak. We found several issues that allow attackers to disrupt
on-chain components using transaction from-running
(TOV-OVM-015).

Key Management Not Considered.

Monitoring Weak. We found that there are missing events to monitor the
contracts (TOB-OVM-012), Additionally, there is no documentation
detailing an incident response plan.

Specification Moderate . Some components like the SafetyCheck contract are
precisely specified, while others only have a very brief description.

Testing & Weak. We found an issue that would enable an attacker to validate

© 2020 Trail of Bits Optimism OVM Assessment | 4

Verification empty proofs (TOB-OVM-008), highlighting the lack of corner cases
in the merkle tree testing.

© 2020 Trail of Bits Optimism OVM Assessment | 5

Engagement Goals
The engagement was scoped to provide a security assessment of OVM smart contracts in
the contracts-v2 repository.

Specifically, we sought to answer the following questions:

● Are appropriate access controls set for the user/controller roles?
● Is there any arithmetic overflow or underflow affecting the code?
● Can participants manipulate or block transactions in L1 or L2?
● Is it possible to manipulate the contracts by front-running transactions?
● Can participants perform denial-of-service or phishing attacks against any of the

components?
● Is the safety checker only allowed to deploy contracts with safe opcodes?
● Can users always append new transactions to the chain, and that doing so always

results in the finalization of a corresponding, unique state root?
● Is it possible to manipulate, falsify or block L1 or L2 messages?

© 2020 Trail of Bits Optimism OVM Assessment | 6

https://github.com/ethereum-optimism/contracts-v2/tree/f6f5f3a63bc99b4e9ab26b51db7206d22213c406

Coverage
The engagement was focused on the following components:

● Lib_MerkleUtils, Lib_RLPReader, Lib_RLPWriter, Lib_MerkleTrie,
Lib_SecureMerkleTrie. This set of libraries allows to construct, transverse, validate
and modify Merkle/Patricia trees. We manually reviewed these contracts, as well
used automatic tools to verify that the data structures are consistently parsed and
outputted. We also checked that invalid or empty proof are always rejected.

● OVM_SafetyChecker. This contract has a single function which accepts some EVM
bytecode and returns whether or not it is “safe,” where safe means if a particular
subset of opcodes is used. We manually reviewed this contract, as well used
automatic tools to verify that no unsafe bytecode can be crafted to bypass these
checks.

● OVM_CanonicalTransactionChain and dependencies: Append-only log of
transactions which should be applied to the rollup state. Allows for a privileged role,
the “sequencer,” to submit their own transactions to the rollup state that they are
forced to include. We manually reviewed the contract's interactions with privileged
and unprivileged users when submitting and verifying new transactions.

● OVM_StateCommitmentChain and dependencies: List of proposed state roots
which parties have asserted are a result of each transaction in the Canonical
Transaction Chain. Elements here have a 1:1 correspondence with those
transactions, and should be the unique state root calculated off-chain by applying
the canonical transactions one by one. We manually reviewed the contract to make
sure its invariants hold and users cannot block important operations.

● OVM_FraudVerifier: Manages any “fraud proofs”, disputes which demonstrate that
a proposal in the State Commitment Chain is a malicious proposal which is NOT a
result of applying the given canonical transaction to the previous state. We manually
reviewed the contract to make sure no one could manipulate, fake or block the
fraud verification procedure.

● OVM_StateTransitioner: Manages the OVM state which is accessed and updated
during a fraud proof. This contract basically is populated with the OVM storage slots
used in the transaction whose state commitment is being proven fraudulent, and
stores the updated storage slots when the OVM transaction is played out on L1, so
they can be compared to the proposed state commitment to check for fraud. We
manually review the contract to make sure that every valid state can be transitioned
into the next one.

● Access controls. Many parts of the system expose privileged functionality, such as
setting parameters or managing transactions. We reviewed these functions to

© 2020 Trail of Bits Optimism OVM Assessment | 7

ensure they can only be triggered by the intended actors and that they do not
contain unnecessary privileges that may be abused.

● Arithmetic. We reviewed arithmetic calculations for logical consistency where
overflows may negatively impact use of the OVM.

Important OVM components outside the scope of this assessment are:

● The execution manager and its dependencies.
● The bond manager and its dependencies.
● The L2 precompiled contracts.
● The Solidity compiler fork to compile contracts using only safe opcodes.
● Any off-chain code components, such as validators.

© 2020 Trail of Bits Optimism OVM Assessment | 8

Automated Testing and Verification
Trail of Bits used automated testing techniques to enhance coverage of certain areas of the
contracts, including:

● Slither , a Solidity static analysis framework. Slither can statically verify algebraic
relationships between Solidity variables. We used Slither to detect invalid or
inconsistent usage of the contracts' APIs across the entire codebase.

● Echidna , a smart contract fuzzer. Echidna can rapidly test security properties via
malicious, coverage-guided test case generation. We used Echidna to test the
expected system properties of the low-level.

Automated testing techniques augment our manual security review but do not replace it.
Each technique has limitations: Slither may identify security properties that fail to hold
when Solidity is compiled to EVM bytecode; Echidna may not randomly generate an edge
case that violates a property. To mitigate these risks, we generate 50,000 test cases per
property with Echidna and then manually review all results.

Automated Testing with Echidna
This is the list of properties that we tested using Echidna.

Property Result

1 isBytecodeSafe returns true if and only if the bytecode is
safe

FAILED
(TOB-OVM-001)

2 Every address converted to an RLP value can be parsed back PASSED

3 Every uint converted to an RPL value can be parsed back PASSED

4 Every bytestring converted to its nibble representation be
parsed back

PASSED

© 2020 Trail of Bits Optimism OVM Assessment | 9

https://github.com/trailofbits/slither
https://github.com/trailofbits/echidna

Recommendations Summary
This section aggregates all the recommendations made during the engagement. Short-term
recommendations address the immediate causes of issues. Long-term recommendations
pertain to the development process and long-term design goals.

Short term
⛶ Review the SafetyCheck contract, its specification and make sure they match. This
will avoid any mismatch. TOB-OVM-001

⛶ Disallow any future updates on the values used in the AddressManager and make
sure the privileged users are using a multisig wallet. This will mitigate a single-point of
failure. TOB-OVM-002

⛶ Rethink how batches are added and stored. This will make sure sure that adding new
batches cannot fail. TOB-OVM-003

⛶ Refactor code to use SafeMath. This will ensure integer overflow is not possible.
TOB-OVM-004

⛶ Wrap all external contract calls in a require or retrieve transaction success, and
emit events after execution to ensure users are aware of transaction success. This
will avoid any unexpected behavior when the target contracts fail to run. TOB-OVM-005

⛶ Apply the checks-effects-interaction-pattern to all functions to ensure changing of
state before invoking a function that makes an external call and emit events after
execution to ensure users are aware of transaction success. This will avoid any
potential reentrancy to be exploited. TOB-OVM-006

⛶ Avoid integer downcasts and rewrite the impacted code to revert if the inputs are
larger than expected . This will avoid introducing an unexpected behavior that could be
exploited TOB-OVM-007

⛶ Reject the empty proof for every function that validates Merkle trees. This will
avoid any validation of incorrect Merkle trees. TOB-OVM-008

⛶ Use gasprice to set a minimum price to pay for the burned gas and properly
document how this measure protects against different types of denial-of-service
attacks. This will mitigate any potential denial-of-service using transactions in L2
TOB-OVM-009

© 2020 Trail of Bits Optimism OVM Assessment | 10

https://solidity.readthedocs.io/en/latest/security-considerations.html#re-entrancy

⛶ Fix the push method to correctly update the deletionOffset . This will avoid any
incorrect updates in the core data structures. TOB-OVM-010

⛶ Ensure users are aware of Optimism's deployed contract address. Additionally,
closely analyze all aspects of the message passing architecture and identify the risks
associated with an attacker deploying different versions . This will mitigate any
phishing attack to the end users. TOB-OVM-011

⛶ Add events for users to easily identify if their message is properly sent. This will
allow external users to easily track down the on-chain results. TOB-OVM-012

⛶ Disallow the creation of OVM_StateTransitioner by any user and include a specific
event so it is easy to determine when the fraud verification process started. This will
mitigate any phishing attack to the end users. TOB-OVM-013

⛶ Validate that the transaction provided is actually related to the state root.
Alternatively, use the state root and the transaction to keep in the update the
mapping. This will avoid blocking fraud verification. TOB-OVM-014

⛶ Make sure the sequencer has dedicated slots to insert batches. This will avoid users
to interfere with the sequencer operations. TOB-OVM-015

⛶ Review and properly document the missing documentation. This will help to make
the code easier to understand, maintain, and review. TOB-OVM-016

⛶ Change the variable that is employed in _verifyQueueTransaction to use
_queueIndex instead of _inclusionProof.index . This will make sure that the batch
validation works as expected. TOB-OVM-17

⛶ Make sure appendSequencerBatch succeeds even if the queue is empty. This will
ensure that the transactions are always properly inserted. TOB-OVM-18

⛶ Make sure the code enforces full monotonicity in the timestamp and block
numbers. This will ensure that the transactions in L2 will work as expected. TOB-OVM-019

⛶ Make sure the fraud process can be initialized under all expected circumstances.
This will ensure that the fraud verification is available, in case it is needed. TOB-OVM-20

© 2020 Trail of Bits Optimism OVM Assessment | 11

Long term
⛶ Use Echidna or Manticore to make sure:

● important system properties hold. TOB-OVM-001 , TOB-OVM-004 , TOB-OVM-010 ,
TOB-OVM-019

● all functions properly validate their inputs. TOB-OVM-007 , TOB-OVM-008

⛶ Review and minimize the permissions assigned to each privileged user. This will
mitigate any potential compromises of private keys and increase trust in the system by its
users. TOB-OVM-002

⛶ Review the access control for every function that changes the state of a
component. This will mitigate potential attacks to disrupt any of the system components .
TOB-OVM-003

⛶ Use Slither on the codebase to detect and prevent if:

● return values are ignored. TOB-OVM-005
● potential re-entrancy attacks are possible. TOB-OVM-006

⛶ Actively monitor the blockchain to detect any potential attacks on the on-chain
components. This will help to quickly react to any potential attacks. TOB-OVM-009 ,
TOB-OVM-015

⛶ Review the risks of third-party contract deployments on all aspects of the system.
This will make sure that third-party interactions work as expected. TOB-OVM-011

⛶ Always add sufficient logging to ensure users are aware of all state updates. This
will help to monitor your contract interactions and react to any potential attacks.
TOB-OVM-012

⛶ Review and minimize unprotected public functions. This will reduce the attack
surface of unprivileged users. TOB-OVM-013

⛶ Review all the public functions and make sure inputs are properly validated. This
will reduce the attack surface of unprivileged users. TOB-OVM-014

⛶ Consider writing a formal specification of the protocol. This will ensure that the
behavior of the protocol is easy to understand and review TOB-OVM-016

⛶ Carefully review the use unit tests to verify correctness of the system. This will
reduce the likelihood of introducing known issues during the development process.
TOB-OVM-17 , TOB-OVM-18

© 2020 Trail of Bits Optimism OVM Assessment | 12

⛶ Review all corner cases in the fraud verification to make sure it cannot be blocked.
This will make sure every possible transaction can be challenged if it is fraudulent .
TOB-OVM-20

© 2020 Trail of Bits Optimism OVM Assessment | 13

Findings Summary
Title Type Severity

1 SafetyChecker allows deployment of
bytecode with unsafe instructions

Data Validation High

2 The owner of the AddressManager
contract can backdoor any contract

Access Control High

3 No access control in appendStateBatch
allows to block proof verification

Access Control High

4 Integer overflow is possible while
checking fraud proof window

Data Validation Medium

5 Result of target.call(msg) execution is
ignored

Undefined
Behavior

Medium

6 Re-entrancy risk in message passing
contracts

Undefined
Behavior

Low

7 Downcasting of integer can lead to
incorrect update of state variable

Data Validation High

8 Lib_MerkleUtils.verify accepts empty
proofs

Data Validation High

9 Denial-of-service protections in enqueue
can be ineffective

Data Validation Low

10 Lib_TimeboundRingBuffer.push
incorrectly updates deletionOffset

Data Validation High

11 Allowing multiple message passing
deployments may result in unexpected
behavior

Undefined
Behavior

Informational

12 Insufficient Logging Auditing and
Logging

Low

13 Any user can create backdoored
OVM_StateTransitioner contracts

Access Control Low

© 2020 Trail of Bits Optimism OVM Assessment | 14

14 Fraud verification allows any transaction
to be used regardless of the state root

Data Validation High

15 Sequencer calls to append new batches
can be front-runned

Data Validation Low

16 Without extensive contract
documentation the codebase is
error-prone

Undefined
Behavior

Informational

17 _verifyQueueTransaction uses incorrect
variable in its body

Data Validation High

18 appendSequencerBatch reverts if queue
is empty

Data Validation Medium

19 Monotonicity of L2’s timestamp and block
number can be violated

Data Validation High

20 Fraud verification reverts if submitted
within the force inclusion period

Data Validation Medium

© 2020 Trail of Bits Optimism OVM Assessment | 15

1. SafetyChecker allows deployment of bytecode with unsafe instructions
Severity: High Difficulty: Low
Type: Data Validation Finding ID: TOB-OVM-001
Target: OVM_SafetyChecker.sol

Description
The SafetyChecker does not properly validate and filter unsafe instructions.

Before deploying any contract in L2, the OVM_SafetyCheck contract scans the bytecode
which should restrict the use of only a subset of EVM instructions to avoid unexpected
behavior. The isBytecodeSafe function is responsible to check if the bytecode contains
only safe instructions:

 contract OVM_SafetyChecker is iOVM_SafetyChecker {

 /********************

 * Public Functions *

 ********************/

 /**

 * Returns whether or not all of the provided bytecode is safe.

 * @param _bytecode The bytecode to safety check.

 * @return ̀true` if the bytecode is safe, ̀false` otherwise.

 */

 function isBytecodeSafe (

 bytes memory _bytecode

)

 override

 external

 view

 returns (bool)

 {

Figure 1.1: isBytecodeSafe function in OVM_SafetyChecker .

The list of unsafe instructions includes:

● ADDRESS
● BALANCE
● ORIGIN
● CALLVALUE
● EXTCODESIZE
● EXTCODECOPY
● EXTCODEHASH

© 2020 Trail of Bits Optimism OVM Assessment | 16

among others. However, despite the CALLVALUE opcode (52) is an unsafe instruction, a
bytecode with only that instruction will not be filtered:

Analyzing contract:

safety-checker-freeze/contracts/crytic/cryticSafetyChecker.sol:OVM_SafetyChecker

crytic_isBytecodeSafe: failed!💥

 Call sequence:

 addByte(52)

Figure 1.2: echidna_isBytecodeSafe test failure .

Exploit Scenario
Eve deploys a contract with unsafe bytecode in the OVM. Then, she uses it to manipulate
other privilege contracts and produce unexpected effects in L2.

Recommendation
Short term, review the SafetyCheck contract, its specification and make sure they match.

Long term, use Echidna or Manticore to make sure important system properties hold.

© 2020 Trail of Bits Optimism OVM Assessment | 17

2. The owner of the AddressManager contract can backdoor any contract
Severity: High Difficulty: High
Type: Access Control Finding ID: TOB-OVM-002
Target: Lib_AddressManager.sol

Description
The code that is used to link together OVM contracts on-chain can be abused by a
privileged user to backdoor any of the components.

Some on-chain components of the OVM interact with each other using contract calling. In
order to set up these pointers, the Address Manager is used:

contract Lib_AddressManager is Ownable {

 ...

 function setAddress (

 string memory _name ,

 address _address

)

 public

 onlyOwner

 {

 addresses[_getNameHash (_name)] = _address;

 }

Figure 2.1: setAddress function in Lib_AddressManager .

However, it is important to note that the owner of this contract can silently change any
pointer in any OVM component at any time.

For instance, in the OVM_L1CrossDomainMessenger, the owner could change the result of
calling resolve("OVM_L2CrossDomainMessenger") to any value:

contract OVM_L1CrossDomainMessenger is iOVM_L1CrossDomainMessenger,

OVM_BaseCrossDomainMessenger, Lib_AddressResolver {

 ...

 /**

 * Sends a cross domain message.

© 2020 Trail of Bits Optimism OVM Assessment | 18

 * @param _message Message to send.

 * @param _gasLimit OVM gas limit for the message.

 */

 function _sendXDomainMessage (

 bytes memory _message ,

 uint256 _gasLimit

)

 override

 internal

 {

 ovmL1ToL2TransactionQueue. enqueue (

 resolve ("OVM_L2CrossDomainMessenger"),

 _gasLimit,

 _message

);

 }

}

Figure 2.2: _sendXDomainMessage function in OVM_L1CrossDomainMessenger .

Exploit Scenario
A malicious admin can silently change the results of the call to resolve to manipulate the
results of the OVM.

Recommendation
Short term, disallow any future updates on the values used in the AddressManager.
Additionally, make sure the privileged users are using a multisig wallet to mitigate a
single-point of failure.

Long term, review and minimize the permissions assigned to each privileged user. This will
mitigate any potential compromises of private keys and increase trust in the system by its
users.

© 2020 Trail of Bits Optimism OVM Assessment | 19

3. No access control in appendStateBatch allows to block proof verification
Severity: High Difficulty: Low
Type: Access Control Finding ID: TOB-OVM-003
Target: OVM_BaseChain.sol, OVM_StateCommitmentChain.sol

Description
The lack of access control when adding state batches allows to block the verification of
proof during the message relay.

When a message is relayed, the caller must provide a proof, which is validated by a series
of checks. One such check is in the verification of an element in the proof:

 function verifyElement (

 bytes calldata _element ,

 Lib_OVMCodec.ChainBatchHeader memory _batchHeader,

 Lib_OVMCodec.ChainInclusionProof memory _proof

)

 override

 public

 view

 returns (

 bool _verified

)

 {

 require (

 _hashBatchHeader (_batchHeader) == batches[_batchHeader.batchIndex],

 "Invalid batch header."

);

 ...

Figure 3.1: header of the verifyElement function in OVM_BaseChain

This code will read the batches list to validate the existence of an element. However, this
state variable can be modified by any user using the appendStateBatch function:

 function appendStateBatch (

 bytes32[] memory _batch

)

 override

 public

 {

© 2020 Trail of Bits Optimism OVM Assessment | 20

 require (

 _batch. length > 0 ,

 "Cannot submit an empty state batch."

);

 require (

 getTotalElements () + _batch. length <=

ovmCanonicalTransactionChain. getTotalElements (),

 "Number of state roots cannot exceed the number of canonical transactions."

);

 bytes [] memory elements = new bytes [](_batch. length);

 for (uint256 i = 0 ; i < _batch. length ; i ++) {

 elements[i] = abi . encodePacked (_batch[i]);

 }

 _appendBatch (elements);

 }

Figure 3.2: appendStateBatch function in OVM_StateCommitmentChain

Moreover, once the batches are added, they cannot be easily removed, until
ovmFraudVerifier calls deleteStateBatch .

Exploit Scenario
Alice submits certain batches to be added. Eve sees the unconfirmed transaction and
front-runs it to submit invalid results. As a result of that, Alice cannot validate her proofs.

Recommendation
Short term, rethink how batches are added and stored. Make sure that adding new batches
cannot fail.

Long term, review the access control for every function that changes the state of a
component to make sure potential attackers cannot disrupt any of the system
components.

© 2020 Trail of Bits Optimism OVM Assessment | 21

4. Integer over�low is possible while checking fraud proof window
Severity: Medium Difficulty: Low
Type: Data Validation Finding ID: TOB-OVM-004
Target: OVM_StateCommitmentChain.sol

Description
Integer overflow is possible when validating a submitted state commitment proof’s
timestamp.

When a message is relayed, the caller must provide a proof, which is validated by a series
of checks. One such check ensures that the proof header’s timestamp is within the
FRAUD_PROOF_WINDOW :

 function insideFraudProofWindow (

 Lib_OVMCodec.ChainBatchHeader memory _batchHeader

)

 override

 public

 view

 returns (

 bool _inside

)

 {

 require (

 _batchHeader.timestamp != 0 ,

 "Batch header timestamp cannot be zero"

);

 return _batchHeader.timestamp + FRAUD_PROOF_WINDOW > block . timestamp ;

 }

Figure 4.1: insideFraudProofWindow function in OVM_StateCommitmentChain.sol

However, as the _batchHeader.timestamp is provided by the caller and the arithmetic
calculation does not use SafeMath, integer overflow is possible.

Exploit Scenario
An attacker, Eve, submits a proof with a significantly large _batchHeader.timestamp that
when added to the current fraud proof window causes the check to overflow and fail,
despite the timestamp being in the future.

Recommendation
Short term, refactor code to use SafeMath. This will ensure integer overflow is not possible.

© 2020 Trail of Bits Optimism OVM Assessment | 22

Long term, use Manticore or Echidna to ensure that no overflows/underflows are possible.

© 2020 Trail of Bits Optimism OVM Assessment | 23

5. Result of target.call(msg) execution is ignored
Severity: Medium Difficulty: Medium
Type: Undefined Behavior Finding ID: TOB-OVM-005
Target: L1_CrossDomainMessenger, OVM_L2CrossDomainMessenger

Description
The message passing contracts assume that a call to an external contract is successful
regardless whether it has failed or not.

To relay messages, the submitted proof is validated, then checked to ensure it has not
been previously processed. Assuming this is true, it calls the external contract:

_target. call (_message);

[...]

receivedMessages[keccak256 (xDomainCalldata)] = true ;

Figure 5.1: relayMessage function in OVM_L2CrossDomainMessenger.sol#L81-88

However, the code does not check to ensure that the _target.call(_message) call is
successful. Instead, it assumes the call is successful and marks the message as received.

Additionally, functions in the message passing flow would benefit from events being
emitted, as these functions currently fail silently and a user needs to retrieve the value of
sentMessages or receivedMessages .

Exploit Scenario
Alice is sending a message from L1 to L2. Once the message has been sent to L2, the
external contract gets called but fails. The contract still marks the messages as executed, so
Alice needs to re-submit the message.

Recommendation
Short term, wrap all external contract calls in a require or retrieve transaction success, and
emit events after execution to ensure users are aware of transaction success.

Long term, use Slither on the codebase to prevent future ignored values.

© 2020 Trail of Bits Optimism OVM Assessment | 24

6. Re-entrancy risk in message passing contracts
Severity: Low Difficulty: Medium
Type: Undefined Behavior Finding ID: TOB-OVM-006
Target: OVM_L2CrossDomainMessenger, OVM_BaseCrossDomainMessenger

Description
The message passing functions allow nonces to be reused and fails to save the sent
message.

After generating calldata to transfer to the other chain, the sendMessage function invokes
_sendXDomainMessage function, then executes state changes on its own contract.

_sendXDomainMessage (xDomainCalldata, _gasLimit);

messageNonce += 1 ;

sentMessages[keccak256 (xDomainCalldata)] = true ;

Figure 6.1: sendMessage function in OVM_BaseCrossDomainMessenger.sol#L49-L52

The target contract invokes an external call to add the transaction to the queue for
processing:

 function _sendXDomainMessage (

 bytes memory _message ,

 uint256 _gasLimit

)

 override

 internal

 {

 ovmCanonicalTransactionChain. enqueue (

 resolve ("OVM_L2CrossDomainMessenger")

 _gasLimit,

 _message

);

 }

Figure 6.2: _sendXDomainMessage function in OVM_L1CrossDomainMessenger.sol#L246-L258

As the external call occurs before changing the contract state, the sendMessage function is
subject to re-entrancy.

© 2020 Trail of Bits Optimism OVM Assessment | 25

Exploit Scenario
Eve uses sendMessage to initiate a message from L1 to L2. She calls this function multiple
times in the middle of execution, and can send multiple duplicate messages without
updating the nonce and sentMessages .

Recommendation
Short term, apply the checks-effects-interaction-pattern to all functions to ensure changing
of state before invoking a function that makes an external call. Also, emit events after
execution to ensure users are aware of transaction success.

Long term, use Slither to detect and prevent future potential re-entrancy attacks.

© 2020 Trail of Bits Optimism OVM Assessment | 26

https://solidity.readthedocs.io/en/latest/security-considerations.html#re-entrancy

7. Downcasting of integer can lead to incorrect update of state variable
Severity: High Difficulty: Low
Type: Data Validation Finding ID: TOB-OVM-007
Target: OVM_StateCommitmentChain.sol, OVM_CanonicalTransactionChain.sol

Description
The indexBatch field is not properly validated and can be used to update the state
variables of the OVM_StateCommitmentChain contract with invalid values.

Any user can call setLastOverwritableIndex function in order to update important
variables such as lastDeletableIndex :

 function setLastOverwritableIndex (

 Lib_OVMCodec.ChainBatchHeader memory _stateBatchHeader,

 Lib_OVMCodec.Transaction memory _transaction,

 Lib_OVMCodec.TransactionChainElement memory _txChainElement,

 Lib_OVMCodec.ChainBatchHeader memory _txBatchHeader,

 Lib_OVMCodec.ChainInclusionProof memory _txInclusionProof

)

 override

 public

 {

 require (

 _isValidBatchHeader (_stateBatchHeader),

 "Invalid batch header."

);

 require (

 insideFraudProofWindow (_stateBatchHeader) == false ,

 "Batch header must be outside of fraud proof window to be overwritable."

);

 require (

 _stateBatchHeader.batchIndex > lastDeletableIndex,

 "Batch index must be greater than last overwritable index."

);

 require (

© 2020 Trail of Bits Optimism OVM Assessment | 27

 ovmCanonicalTransactionChain. verifyTransaction (

 _transaction,

 _txChainElement,

 _txBatchHeader,

 _txInclusionProof

),

 "Invalid transaction proof."

);

 lastDeletableIndex = _stateBatchHeader.batchIndex;

 lastDeletableTimestamp = _transaction.timestamp;

 }

Figure 7.1: setLastOverwritableIndex function in OVM_StateCommitmentChain.sol

One important input, the batch header, is initially validated by _isValidBatchHeader :

 function _isValidBatchHeader (

 Lib_OVMCodec.ChainBatchHeader memory _batchHeader

)

 internal

 view

 returns (

 bool

)

 {

 return Lib_OVMCodec. hashBatchHeader (_batchHeader) ==

batches. get (uint40 (_batchHeader.batchIndex));

 }

}

Figure 7.2: insideFraudProofWindow function in OVM_StateCommitmentChain.sol

However, using a batchIndex larger than 2**40 will not necessarily fail, since the uint40
function will clear any extra bits from the input. A similar issue is present in
_ verifyElement :

 function _verifyElement (

 bytes32 _element ,

 Lib_OVMCodec.ChainBatchHeader memory _batchHeader,

© 2020 Trail of Bits Optimism OVM Assessment | 28

 Lib_OVMCodec.ChainInclusionProof memory _proof

)

 internal

 view

 returns (

 bool

)

 {

 require (

 Lib_OVMCodec. hashBatchHeader (_batchHeader) ==

batches. get (uint32 (_batchHeader.batchIndex)),

 "Invalid batch header."

);

 require (

 Lib_MerkleUtils. verify (

 _batchHeader.batchRoot,

 _element,

 _proof.index,

 _proof.siblings

),

 "Invalid inclusion proof."

);

 return true ;

 }

}

Figure 7.3: _verifyElement function in OVM_CanonicalTransactionChain.sol

A similar issue is present in _appendBatch , _deleteBatch and getQueueElement .

Exploit Scenario
Eve calls setLastOverwritableIndex with a batch header containing a specially-crafted
index that will be validated by all the checks despite being invalid. As a result,
lastDeletableIndex will be updated with a very large value, potentially blocking any
future calls to setLastOverwritableIndex .

Recommendation

© 2020 Trail of Bits Optimism OVM Assessment | 29

Short term, avoid integer downcasts and rewrite the impacted code to revert if the inputs
are larger than expected.

Long term, use Echidna or Manticore to make sure all your functions properly validate their
inputs.

© 2020 Trail of Bits Optimism OVM Assessment | 30

8. Lib_MerkleUtils.verify accepts empty proofs
Severity: High Difficulty: Low
Type: Data Validation Finding ID: TOB-OVM-008
Target: OVM_FraudVerifier.sol, OVM_StateCommitmentChain.sol,
Lib_MerkleUtils.sol

Description
Lib_MerkleUtil’s verify function verifies the validity of a Merkle tree, but does not check for
empty proofs and can be bypassed by arguments that attackers provide.

Any user can initiate the fraud verification process by calling
initializeFraudVerification :

 function initializeFraudVerification (

 bytes32 _preStateRoot ,

 Lib_OVMCodec.ChainBatchHeader memory _preStateRootBatchHeader,

 Lib_OVMCodec.ChainInclusionProof memory _preStateRootProof,

 Lib_OVMCodec.Transaction memory _transaction,

 Lib_OVMCodec.TransactionChainElement memory _txChainElement,

 Lib_OVMCodec.ChainBatchHeader memory _transactionBatchHeader,

 Lib_OVMCodec.ChainInclusionProof memory _transactionProof

)

 override

 public

 contributesToFraudProof (_preStateRoot)

 {

 if (_hasStateTransitioner (_preStateRoot)) {

 return ;

 }

 require (

 ovmStateCommitmentChain. verifyStateCommitment (

 _preStateRoot,

 _preStateRootBatchHeader,

 _preStateRootProof

),

 "Invalid pre-state root inclusion proof."

);

 ...

© 2020 Trail of Bits Optimism OVM Assessment | 31

Figure 8.1: header of the initializeFraudVerification function in
OVM_FraudVerifier.sol

This function relies on verifyCommitStatement :

 function verifyStateCommitment (

 bytes32 _element ,

 Lib_OVMCodec.ChainBatchHeader memory _batchHeader,

 Lib_OVMCodec.ChainInclusionProof memory _proof

)

 override

 public

 view

 returns (

 bool

)

 {

 require (

 _isValidBatchHeader (_batchHeader),

 "Invalid batch header."

);

 require (

 Lib_MerkleUtils. verify (

 _batchHeader.batchRoot,

 _element,

 _proof.index,

 _proof.siblings

),

 "Invalid inclusion proof."

);

 return true ;

 }

Figure 8.2: verifyStateCommitment function in OVM_StateCommitmentChain.sol

which is implemented using Lib_MerkleUtils.verify :

 function verify (

© 2020 Trail of Bits Optimism OVM Assessment | 32

 bytes32 _root ,

 bytes32 _leaf ,

 uint256 _path ,

 bytes32[] memory _siblings

)

 internal

 pure

 returns (

 bool _verified

)

 {

 bytes32 computedRoot = _leaf;

 for (uint256 i = 0 ; i < _siblings. length ; i ++) {

 bytes32 sibling = _siblings[i];

 bool isRightSibling = uint8 (_path >> i & 1) == 1 ;

 if (isRightSibling) {

 computedRoot = _getParentHash (computedRoot, sibling);

 } else {

 computedRoot = _getParentHash (sibling, computedRoot);

 }

 }

 return computedRoot == _root;

 }

Figure 8.3: verify function in Lib_MerkleUtils.sol

However, this function will not check if the _siblings list is empty, allowing it to verify the
validity of the Merkle tree just with the computedRoot == _root return statement. This
allows the proof to be trivially validated.

Exploit Scenario
Eve initializes a fraud verification process but supplies an empty proof, and she is able to
produce fake fraud proof for valid states.

Recommendation
Short term, reject the empty proof for every function that validates Merkle trees.

Long term, use Echidna or Manticore to make sure inputs are properly validated.

© 2020 Trail of Bits Optimism OVM Assessment | 33

9. Denial-of-service protections in enqueue can be ine�fective
Severity: Low Difficulty: High
Type: Data Validation Finding ID: TOB-OVM-009
Target: OVM_CanonicalTransactionChain.sol

Description
Enqueuing new transactions is protected by a minimal amount of gas to consume, but
there is no check that gas price is not negligible or zero.

Any user is allowed to enqueue any number of transactions into the L2 chain. To avoid a
potential denial-of-service, users are asked to burn a certain amount of gas:

 function enqueue (

 address _target ,

 uint256 _gasLimit ,

 bytes memory _data

)

 override

 public

 {

 require (

 _data. length <= MAX_ROLLUP_TX_SIZE,

 "Transaction exceeds maximum rollup transaction data size."

);

 require (

 _gasLimit >= MIN_ROLLUP_TX_GAS,

 "Transaction gas limit too low to enqueue."

);

 // We need to consume some amount of L1 gas in order to rate limit transactions going

into

 // L2. However, L2 is cheaper than L1 so we only need to burn some small proportion

of the

 // provided L1 gas.

 uint256 gasToConsume = _gasLimit / L2_GAS_DISCOUNT_DIVISOR;

 uint256 startingGas = gasleft ();

© 2020 Trail of Bits Optimism OVM Assessment | 34

 // Although this check is not necessary (burn below will run out of gas if not true),

it

 // gives the user an explicit reason as to why the enqueue attempt failed.

 require (

 startingGas > gasToConsume,

 "Insufficient gas for L2 rate limiting burn."

);

 // Here we do some "dumb" work in order to burn gas, although we should probably

replace

 // this with something like minting gas token later on.

 uint256 i;

 while (startingGas - gasleft () < gasToConsume) {

 i ++ ;

 }

 …

Figure 9.1: header of the enqueue function in OVM_CanonicalTransactionChain.sol

However, it is important to note that the actual price of the gas (gasprice) is never checked
for a minimal value. This allows the gas price to be set to zero. Moreover, miners can
introduce any number of transactions in the current block without actually paying for the
gas.

Exploit Scenario
An attacker, Eve, submits a very large amount with a very low amount of gas, even zero and
waits for the Ethereum blockchain to go through a low-congestion period. Her transactions
are eventually confirmed, flooding L2 with useless messages.

Recommendation
Short term, use gasprice to set a minimum price to pay for the burned gas. Properly
document how this measure protects against different types of denial-of-service attacks.

Long term, actively monitor the blockchain to detect any potential attacks on the on-chain
components.

© 2020 Trail of Bits Optimism OVM Assessment | 35

10. Lib_TimeboundRingBuffer.push incorrectly updates
deletionOffset
Severity: High Difficulty: Low
Type: Data Validation Finding ID: TOB-OVM-010
Target: Lib_TimeboundRingBuffer.sol

Description
deleteElementsAfter improperly updates the deletionOffset variable making it
impossible to read or delete any elements once maxSize is reached.

Users are allowed to push batches of transactions. When k new elements are pushed, the
upper bound increases by k . The lower bound stays the same if deletionOffset > 0 (i.e.
there are still deleted elements). Since length is increased by k , the way to achieve this is to
decrease deletionOffset by k to max(0, deletionOffset - k) . The push2 function
correctly implements this:

 if (_self.deletionOffset != 0) {

 _self.deletionOffset = _self.deletionOffset == 1 ? 0 : _self.deletionOffset - 2 ;

 }

Figure 10.1: push2 is correct

However, push increments it instead:

 if (_self.deletionOffset != 0) {

 _self.deletionOffset += 1 ;

 }

Figure 10.2: push is incorrect

As a result, the lower bound on the index for get will be higher than expected, preventing
from reading valid elements.

Exploit Scenario
Alice deploys a contract that depends on Canonical Transaction Chain or State
Commitment Chain that reads a valid element from the batch list. The transaction is
reverted instead, which can lead to unexpected consequences.

Recommendation
Short term, fix the push method to correctly update the deletionOffset .

Long term, use Echidna to check for invariants in data structure libraries and other critical
logic.

© 2020 Trail of Bits Optimism OVM Assessment | 36

11. Allowing multiple message passing deployments may result in
unexpected behavior
Severity: Informational Difficulty: Undetermined
Type: Undefined Behavior Finding ID: TOB-OVM-011
Target: bridge/

Description
Optimism’s current architecture allows third parties to deploy different versions of
message passing contracts which may result in unexpected behavior.

By allowing third parties to deploy these contracts, it may have unintended consequences
such as:

● Malicious contract changes sendMessage() to replace L1’s msg.sender with the
attacker’s address and submits cross-domain with the injected value

● Malicious contract tricks users into paying for transactions but replaces the target
contract and message values with values of their choice

● Deploy a series of message passing contracts looking identical to Optimism’s with an
upgradeability feature allowing attackers to change code anytime they wish

● Replace xDomainSender with an address that an attacker chooses
● Change and update the storage and state proof verification

Recommendation
Short term, ensure users are aware of Optimism's deployed contract address. Additionally,
closely analyze all aspects of the message passing architecture and identify the risks
associated with an attacker deploying different versions.

Long term, review the risks of third-party contract deployments on all aspects of the
system.

© 2020 Trail of Bits Optimism OVM Assessment | 37

12. Insu�ficient Logging
Severity: Low Difficulty: High
Type: Auditing and Logging Finding ID: TOB-OVM-012
Target: OVM_L2CrossDomainMessenger, OVM_L1CrossDomainMessenger,
OVM_BaseCrossDomainMessenger

Description
When sending and relaying messages, these functions fail silently and do not alert users to
failed transactions.

When relaying a message, the function executes an external call and updates
receivedMessages :

 require (

 successfulMessages[keccak256 (xDomainCalldata)] == false ,

 "Provided message has already been received."

);

 xDomainMessageSender = _sender;

 _target. call (_message);

 [...]

 receivedMessages[keccak256 (xDomainCalldata)] = true ;

Figure 12.1: relayMessage function in OVM_L2CrossDomainMessenger.sol#L81-88

However, this code does not emit an event to broadcast the message has been processed
so a user is unaware of the execution of their function call.

Exploit Scenario
Alice relies on a relayer to send her message from L1 to L2. While her message is relayed
on L2, the call fails. Due to the lack of events, Alice is unaware that her transaction was
unsuccessful, and must directly retrieve receivedMessages .

This issue is present in relayMessage on L1 and L2’s CrossDomainMessenger as well as
BaseDomainMessenger’s sendMessage.

Recommendation
Short term, add events for users to easily identify if their message is properly sent.

Long term, always add sufficient logging to ensure users are aware of all state updates.

© 2020 Trail of Bits Optimism OVM Assessment | 38

13. Any user can create backdoored OVM_StateTransitioner contracts
Severity: Low Difficulty: High
Type: Access Control Finding ID: TOB-OVM-013
Target: OVM_StateTransitionerFactory.sol, OVM_StateTransitioner.sol,
OVM_FraudVerifier.sol

Description
The code that is used to create new OVM_StateTransitioner contracts can be called by any
user with some parameters that allow to alter how the contract works.

Any user can initiate the fraud verification process by calling
initializeFraudVerification :

 function initializeFraudVerification (

 bytes32 _preStateRoot ,

 Lib_OVMCodec.ChainBatchHeader memory _preStateRootBatchHeader,

 Lib_OVMCodec.ChainInclusionProof memory _preStateRootProof,

 Lib_OVMCodec.Transaction memory _transaction,

 Lib_OVMCodec.TransactionChainElement memory _txChainElement,

 Lib_OVMCodec.ChainBatchHeader memory _transactionBatchHeader,

 Lib_OVMCodec.ChainInclusionProof memory _transactionProof

)

 override

 public

 contributesToFraudProof (_preStateRoot)

 {

 if (_hasStateTransitioner (_preStateRoot)) {

 return ;

 }

 require (

 ovmStateCommitmentChain. verifyStateCommitment (

 _preStateRoot,

 _preStateRootBatchHeader,

 _preStateRootProof

),

 "Invalid pre-state root inclusion proof."

);

 require (

© 2020 Trail of Bits Optimism OVM Assessment | 39

 _verifyTransaction (

 _transaction,

 _transactionBatchHeader,

 _transactionProof

),

 "Invalid transaction inclusion proof."

);

 transitioners[_preStateRoot] = iOVM_StateTransitionerFactory (

 resolve ("OVM_StateTransitionerFactory")

). create (

 address (libAddressManager),

 _preStateRootProof.index,

 _preStateRoot,

 Lib_OVMCodec. hashTransaction (_transaction)

}

Figure 13.1: initializeFraudVerification function in OVM_FraudVerifier.sol

This function will create a new OVM_StateTransitioner contract, in order to allow the user
to submit the requested information to confirm an invalid state.

However, it is still possible to call create to deploy a fresh OVM_StateTransitioner
contract using the OVM_StateTransitionerFactory . Moreover, it also allows the caller to
specify critical parameters to use in the contract, such as the pointers to other ones like
OVM_StateManager .

 function create (

 address _libAddressManager ,

 uint256 _stateTransitionIndex ,

 bytes32 _preStateRoot ,

 bytes32 _transactionHash

)

 override

 public

 returns (

 iOVM_StateTransitioner _ovmStateTransitioner

)

 {

 return new OVM_StateTransitioner (

 _libAddressManager,

© 2020 Trail of Bits Optimism OVM Assessment | 40

 _stateTransitionIndex,

 _preStateRoot,

 _transactionHash

);

 }

Figure 13.2: create function in OVM_StateTransitionerFactory.sol

Exploit Scenario
Alice notices a fraudulent transaction. Eve tricks Alice to accept a freshly created
OVM_StateTransitioner , but using incorrect parameters. Since the contract has invalid
values, Alice will be unable to successfully prove the fraud.

Recommendation
Short term, disallow the creation of OVM_StateTransitioner by any user and include a
specific event so it is easy to determine when the fraud verification process started.

Long term, review and minimize unprotected public functions. This will reduce the attack
surface of unprivileged users.

© 2020 Trail of Bits Optimism OVM Assessment | 41

14. Fraud verification allows any transaction to be used regardless of the
state root
Severity: High Difficulty: Medium
Type: Data Validation Finding ID: TOB-OVM-014
Target: OVM_FraudVerifier.sol

Description
The fraud verification procedure does not correctly validate the relationship between the
state root and the transaction provided.

Any user can initiate the fraud verification process by calling
initializeFraudVerification. This function requires to provide the state root and
transaction:

 function initializeFraudVerification (

 bytes32 _preStateRoot ,

 Lib_OVMCodec.ChainBatchHeader memory _preStateRootBatchHeader,

 Lib_OVMCodec.ChainInclusionProof memory _preStateRootProof,

 Lib_OVMCodec.Transaction memory _transaction,

 Lib_OVMCodec.TransactionChainElement memory _txChainElement,

 Lib_OVMCodec.ChainBatchHeader memory _transactionBatchHeader,

 Lib_OVMCodec.ChainInclusionProof memory _transactionProof

)

 override

 public

 contributesToFraudProof (_preStateRoot)

 {

 if (_hasStateTransitioner (_preStateRoot)) {

 return ;

 }

 require (

 ovmStateCommitmentChain. verifyStateCommitment (

 _preStateRoot,

 _preStateRootBatchHeader,

 _preStateRootProof

),

 "Invalid pre-state root inclusion proof."

);

© 2020 Trail of Bits Optimism OVM Assessment | 42

 require (

 _verifyTransaction (

 _transaction,

 _transactionBatchHeader,

 _transactionProof

),

 "Invalid transaction inclusion proof."

);

 transitioners[_preStateRoot] = iOVM_StateTransitionerFactory (

 resolve ("OVM_StateTransitionerFactory")

). create (

 address (libAddressManager),

 _preStateRootProof.index,

 _preStateRoot,

 Lib_OVMCodec. hashTransaction (_transaction)

}

Figure 14.1: initializeFraudVerification function in OVM_FraudVerifier.sol

However, there are no checks to ensure that the pair of state root and transaction provided
actually make sense. The initialization will write the transationers mapping, where only
the state root is considered, and this mapping is never cleaned or overwritten.

Exploit Scenario
Eve starts the fraud verification procedure using a valid state root, but an unrelated
transaction. This will block any subsequent attempts to start the fraud verification with a
relevant transaction.

Recommendation
Short term, validate that the transaction provided is actually related with the state root.
Alternatively, use the state root and the transaction to keep in the update the mapping.

Long term, review all the public functions and make sure inputs are properly validated.

© 2020 Trail of Bits Optimism OVM Assessment | 43

15. Sequencer calls to append new batches can be front-runned
Severity: Low Difficulty: High
Type: Data Validation Finding ID: TOB-OVM-015
Target: OVM_FraudVerifier.sol

Description
Any user can block the sequencer front-running its function to add new batches.

The OVM_CanonicalTransactionChain allows for a privileged role, the sequencer to insert
their own transactions to the rollup state using the appendSequencerBatch :

 function appendSequencerBatch ()

 override

 public

 {

 uint40 shouldStartAtBatch;

 uint24 totalElementsToAppend;

 uint24 numContexts;

 assembly {

 shouldStartAtBatch : = shr (216 , calldataload (4))

 totalElementsToAppend : = shr (232 , calldataload (9))

 numContexts : = shr (232 , calldataload (12))

 }

 require (

 shouldStartAtBatch == getTotalElements (),

 "Actual batch start index does not match expected start index."

);

 ...

Figure 15.1: header of appendSequencerBatch function in
OVM_CanonicalTransactionChain.sol

However, the first of the parameters required, shouldStartAtBatch , is vulnerable to
front-running, since it will be immediately checked with the result of getTotalElements .
Any user can call appendBatch can increase the number of total elements:

function appendQueueBatch (

 uint256 _numQueuedTransactions

)

© 2020 Trail of Bits Optimism OVM Assessment | 44

 override

 public

 {

 require (

 _numQueuedTransactions > 0 ,

 "Must append more than zero transactions."

);

 uint40 nextQueueIndex = _getNextQueueIndex ();

 bytes32 [] memory leaves = new bytes32 [](_numQueuedTransactions);

 for (uint256 i = 0 ; i < _numQueuedTransactions; i ++) {

 leaves[i] = _getQueueLeafHash (nextQueueIndex);

 nextQueueIndex ++ ;

 }

 _appendBatch (

 Lib_MerkleUtils. getMerkleRoot (leaves),

 _numQueuedTransactions,

 _numQueuedTransactions

);

 emit QueueBatchAppended (

 nextQueueIndex - _numQueuedTransactions,

 _numQueuedTransactions,

 getTotalElements ()

);

 }

Figure 15.2: appendQueueBatch function in OVM_CanonicalTransactionChain.sol

Exploit Scenario
Alice is the sequencer of OVM and wants to include a new batch. Eve front-runs her call to
increase the number of total elements before Alice's transaction is confirmed. So, Alice's
call to appendSequencerBatch reverts because Eve's transaction is confirmed first.

Recommendation
Short term, make sure the sequencer has dedicated slots to insert batches.

Long term, actively monitor the blockchain to identify and mitigate front-running attacks.

© 2020 Trail of Bits Optimism OVM Assessment | 45

16. Without extensive contract documentation the codebase is error-prone
Severity: Informational Difficulty: Low
Type: Undefined Behavior Finding ID: TOB-OVM-016
Target: .

Description
Overall, the codebase lacks code documentation, high-level description, and examples,
making the contracts difficult to review and increasing the likelihood of user mistakes.

The current documentation would benefit from more details, including:

● An overall protocol walkthrough, showing the different users, their interactions, and
the inputs and outputs.

● High-level description of the use cases of L1/L2 messages.
● A low-level description of the ring buffer is used by each component.
● A thorough description of the fraud verification steps, including their hashing

schemas and the transaction/storage representations.
● The sequencer role and exactly how it impacts the ordering of batches.
● Time-related actions (fraud deadlines).

The documentation for each of these items should include their expected properties and
assumptions.

Recommendation
Short term, review and properly document the missing documentation.

Long term, consider writing a formal specification of the protocol.

© 2020 Trail of Bits Optimism OVM Assessment | 46

17. _verifyQueueTransaction uses incorrect variable in its body
Severity: High Difficulty: Low
Type: Data Validation Finding ID: TOB-OVM-17
Target: OVM_CanonicalTransactionChain.sol

Description
The verification of transactions in the Canonical Transaction Chain is incorrectly
implemented, potentially blocking the fraud verification procedure.

The Canonical Transaction Chain provides a public view function verifyTransaction that
is used in the State Commitment Chain and during fraud proofs.

 function verifyTransaction (

 Lib_OVMCodec.Transaction memory _transaction,

 Lib_OVMCodec.TransactionChainElement memory _txChainElement,

 Lib_OVMCodec.ChainBatchHeader memory _batchHeader,

 Lib_OVMCodec.ChainInclusionProof memory _inclusionProof

)

 override

 public

 view

 returns (

 bool

)

 {

 if (_txChainElement.isSequenced == true) {

 return _verifySequencerTransaction (

 _transaction,

 _txChainElement,

 _batchHeader,

 _inclusionProof

);

 } else {

 return _verifyQueueTransaction (

 _transaction,

 _txChainElement.queueIndex,

 _batchHeader,

 _inclusionProof

);

 }

© 2020 Trail of Bits Optimism OVM Assessment | 47

 }

Figure 17.1: verifyTransaction function

This function is implemented using _verifyQueueTransaction in the case that the
transaction in question comes from the queue. This function receives as parameters the
transaction to be verified, the index of the corresponding queue element, as well as the
batch header where it was included and a Merkle proof.

function _verifyQueueTransaction (

 Lib_OVMCodec.Transaction memory _transaction,

 uint256 _queueIndex ,

 Lib_OVMCodec.ChainBatchHeader memory _batchHeader,

 Lib_OVMCodec.ChainInclusionProof memory _inclusionProof

)

 internal

 view

 returns (

 bool

)

 {

 bytes32 leafHash = _getQueueLeafHash (_inclusionProof.index);

Figure 17.2. _verifyQueueTransaction function

However, since transactions from the queue are saved (as a leaf of the Merkle tree) in a
format following _getQueueLeafHash , the function must convert it to that format. The
_queueIndex is the correct parameter to pass in the following line, not the
_inclusionProof.index .

Since the two variables will be equal in the long run with negligible probability, then it is
likely this line will always return an incorrect leaf hash.

Exploit Scenario
Eve submit arbitrary state roots to trigger this issue and make the inclusion proof fail. So,
no fraud verification will be able to be initialized.

Recommendation
Short term, change the variable that is employed in _verifyQueueTransaction to use
_queueIndex instead of _inclusionProof.index .

Long term, carefully review the use unit tests to verify correctness of the system.

© 2020 Trail of Bits Optimism OVM Assessment | 48

18. appendSequencerBatch reverts if queue is empty
Severity: Medium Difficulty: Low
Type: Data Validation Finding ID: TOB-OVM-18
Target: OVM_CanonicalTransactionChain.sol

Description
If the sequencer tries to append a batch when the queue is empty, this operation will fail.

The sequencer user has the privilege to insert transactions at arbitrary points of the queue.
This user should call appendSequencerBatch to append transactions to the Canonical
Transaction Chain. In the body, there is a jump to _validateBatchContext :

 function appendSequencerBatch ()

 override

 public

 {

 uint40 shouldStartAtBatch;

 uint24 totalElementsToAppend;

 uint24 numContexts;

 assembly {

 shouldStartAtBatch : = shr (216 , calldataload (4))

 totalElementsToAppend : = shr (232 , calldataload (9))

 numContexts : = shr (232 , calldataload (12))

 }

 …

 uint40 nextQueueIndex = _getNextQueueIndex ();

 for (uint32 i = 0 ; i < numContexts; i ++) {

 BatchContext memory context = _getBatchContext (i);

 _validateBatchContext (context, nextQueueIndex);

 ...

 }

Figure 18.1. part of the appendSequencerBatch function

_validateBatchContext then retrieves the element’s hash and its metadata:

© 2020 Trail of Bits Optimism OVM Assessment | 49

 function _validateBatchContext (

 BatchContext memory _context,

 uint40 _nextQueueIndex

)

 internal

 view

 {

 if (queue. getLength () == 0) {

 return ;

 }

 Lib_OVMCodec.QueueElement memory nextQueueElement = getQueueElement (_nextQueueIndex);

 ...

Figure 18.2. part of the _validateBatchContext function

However, if the queue is “empty” (i.e. _nextQueueIndex == queue.getLength()), then this
function will revert. Hence in at least two situations, the appendSequencerBatch will revert,
even though successful execution would be expected:

1. Queue is empty in the pre-state.
2. All queued elements are included by the sequencer, and there is another batch

context.

Exploit Scenario
Alice is a sequencer that submits a batch when the queue is empty. She is expecting the call
to succeed, but instead it reverts, leading to unintended consequences.

Recommendation
Short term, make sure appendSequencerBatch succeeds even if the queue is empty.

Long term, use extensive unit tests to ensure correctness of all interactions in all situations.

© 2020 Trail of Bits Optimism OVM Assessment | 50

19. Monotonicity of L2’s timestamp and block number can be violated
Severity: High Difficulty: Medium
Type: Data Validation Finding ID: TOB-OVM-019
Target: OVM_CanonicalTransactionChain.sol

Description
The sequenced transactions can be enqueued in L2 using invalid timestamps and block
numbers that are impossible in L1.

The sequencer user has the privilege to insert transactions at arbitrary points of the queue.
This user should call appendSequencerBatch to append transactions to the Canonical
Transaction Chain. In the body, there is a jump to _validateBatchContext :

 function appendSequencerBatch ()

 override

 public

 {

 uint40 shouldStartAtBatch;

 uint24 totalElementsToAppend;

 uint24 numContexts;

 assembly {

 shouldStartAtBatch : = shr (216 , calldataload (4))

 totalElementsToAppend : = shr (232 , calldataload (9))

 numContexts : = shr (232 , calldataload (12))

 }

 …

 uint40 nextQueueIndex = _getNextQueueIndex ();

 for (uint32 i = 0 ; i < numContexts; i ++) {

 BatchContext memory context = _getBatchContext (i);

 _validateBatchContext (context, nextQueueIndex);

 ...

 }

Figure 19.1. part of the appendSequencerBatch function

_validateBatchContext performs checks on the timestamp and block number before
allowing a transaction to be inserted:

© 2020 Trail of Bits Optimism OVM Assessment | 51

 function _validateBatchContext (

 BatchContext memory _context,

 uint40 _nextQueueIndex

)

 internal

 view

 {

 if (queue. getLength () == 0) {

 return ;

 }

 Lib_OVMCodec.QueueElement memory nextQueueElement = getQueueElement (_nextQueueIndex);

 require (

 block . timestamp < nextQueueElement.timestamp + forceInclusionPeriodSeconds,

 "Older queue batches must be processed before a new sequencer batch."

);

 require (

 _context.timestamp <= nextQueueElement.timestamp,

 "Sequencer transactions timestamp too high."

);

 require (

 _context.blockNumber <= nextQueueElement.blockNumber,

 "Sequencer transactions blockNumber too high."

);

 }

Figure 19.2. _validateBatchContext function

However, this does not fully enforce monotonicity of the timestamp and block number. In
particular, sequenced transactions may have a lower value than a previous queue element,
and sequenced transactions in a later batch context may also have a lower value.

Exploit Scenario

© 2020 Trail of Bits Optimism OVM Assessment | 52

The sequencer appends transactions in an order that violates the guarantee of increasing
block timestamp and block numbers. As a result, execution on L2 leads to unexpected
results.

Recommendation
Short term, make sure the code enforces full monotonicity.

Long term, use Manticore or Echidna to ensure invariants hold under all situations.

© 2020 Trail of Bits Optimism OVM Assessment | 53

20. Fraud verification reverts if submitted within the force inclusion period
Severity: Medium Difficulty: Medium
Type: Data Validation Finding ID: TOB-OVM-20
Target: OVM_CanonicalTransactionChain.sol

Description
Certain transactions submitted by the sequencer are impossible to challenge during the
fraud verification procedure.

The sequencer user has the privilege to insert transactions at arbitrary points of the queue.
This user should call appendSequencerBatch to append transactions to the Canonical
Transaction Chain. In the body, there is a jump to _validateBatchContext :

 function appendSequencerBatch ()

 override

 public

 {

 uint40 shouldStartAtBatch;

 uint24 totalElementsToAppend;

 uint24 numContexts;

 assembly {

 shouldStartAtBatch : = shr (216 , calldataload (4))

 totalElementsToAppend : = shr (232 , calldataload (9))

 numContexts : = shr (232 , calldataload (12))

 }

 …

 for (uint32 j = 0 ; j < context.numSubsequentQueueTransactions; j ++) {

 leaves[transactionIndex] = _getQueueLeafHash (nextQueueIndex);

 nextQueueIndex ++ ;

 transactionIndex ++ ;

 }

 …

 }

Figure 20.1. part of the appendSequencerBatch function

_getQueueLeafHash performs some checks on the timestamp of the next queue:

© 2020 Trail of Bits Optimism OVM Assessment | 54

 function _getQueueLeafHash (

 uint256 _index

)

 internal

 view

 returns (

 bytes32

)

 {

 Lib_OVMCodec.QueueElement memory element = getQueueElement (_index);

 require (

 msg . sender == sequencer

 || element.timestamp + forceInclusionPeriodSeconds <= block . timestamp ,

 "Queue transactions cannot be submitted during the sequencer inclusion period."

);

 return _hashTransactionChainElement (

 Lib_OVMCodec. TransactionChainElement ({

 isSequenced : false ,

 queueIndex : _index,

 timestamp : 0 ,

 blockNumber : 0 ,

 txData : hex ""

 })

);

 }

Figure 20.2. part of the _getQueueLeafHash function

The intentions of the require are so that enqueued elements can be included by the
sequencer (through appendSequencerBatch) within a time period (after they can be
included by anyone, including the sequencer, through appendQueueBatch).
However, this require will run every time this getter is called, even from a different
mechanism.

Exploit Scenario
Bob notices an incorrect state root and initializes the fraud proof process. In particular, it
will run during initialization of the fraud proof involving a queued transaction:

1. FraudVerifier.initializeFraudVerification

© 2020 Trail of Bits Optimism OVM Assessment | 55

2. Calls ovmCTC.verifyTransaction
3. Jumps to _verifyQueueTransaction
4. Jumps to _getQueueLeafHash

He expects the call to succeed, but it reverts, which could lead to unexpected results.

Recommendation
Short term, make sure the fraud process can be initialized under all expected
circumstances.

Long term, review all the corner cases in the fraud verification to make sure it cannot be
blocked.

© 2020 Trail of Bits Optimism OVM Assessment | 56

A. Vulnerability Classifications
Vulnerability Classes

Class Description

Access Controls Related to authorization of users and assessment of rights

Auditing and Logging Related to auditing of actions or logging of problems

Authentication Related to the identification of users

Configuration Related to security configurations of servers, devices, or
software

Cryptography Related to protecting the privacy or integrity of data

Data Exposure Related to unintended exposure of sensitive information

Data Validation Related to improper reliance on the structure or values of data

Denial of Service Related to causing system failure

Error Reporting Related to the reporting of error conditions in a secure fashion

Patching Related to keeping software up to date

Session Management Related to the identification of authenticated users

Testing Related to test methodology or test coverage

Timing Related to race conditions, locking, or order of operations

Undefined Behavior Related to undefined behavior triggered by the program

Code Quality Related to conforming to industry best practices of code

Severity Categories

Severity Description

Informational The issue does not pose an immediate risk, but is relevant to security
best practices or Defense in Depth

Undetermined The extent of the risk was not determined during this engagement

Low The risk is relatively small or is not a risk the customer has indicated is

© 2020 Trail of Bits Optimism OVM Assessment | 57

important

Medium Individual user’s information is at risk, exploitation would be bad for
client’s reputation, moderate financial impact, possible legal
implications for client

High Large numbers of users, very bad for client’s reputation, or serious
legal or financial implications

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploit was not determined during this engagement

Low Commonly exploited, public tools exist or can be scripted that exploit
this flaw

Medium Attackers must write an exploit, or need an in-depth knowledge of a
complex system

High The attacker must have privileged insider access to the system, may
need to know extremely complex technical details, or must discover
other weaknesses in order to exploit this issue

© 2020 Trail of Bits Optimism OVM Assessment | 58

B. Code Maturity Classifications
Code Maturity Classes

Category Name Description

Access Controls Related to the authentication and authorization of components.

Arithmetic Related to the proper use of mathematical operations and
semantics.

Assembly Use Related to the use of inline assembly.

Centralization Related to the existence of a single point of failure.

Upgradeability Related to contract upgradeability.

Function
Composition

Related to separation of the logic into functions with clear purpose.

Front-Running Related to resilience against front-running.

Key Management Related to the existence of proper procedures for key generation,
distribution, and access.

Monitoring Related to use of events and monitoring procedures.

Specification Related to the expected codebase documentation.

Testing &
Verification

Related to the use of testing techniques (unit tests, fuzzing, symbolic
execution, etc.).

Rating Criteria

Rating Description

Strong The component was reviewed and no concerns were found.

Satisfactory The component had only minor issues.

Moderate The component had some issues.

Weak The component led to multiple issues; more issues might be present.

Missing The component was missing.

© 2020 Trail of Bits Optimism OVM Assessment | 59

Not Applicable The component is not applicable.

Not Considered The component was not reviewed.

Further
Investigation
Required

The component requires further investigation.

© 2020 Trail of Bits Optimism OVM Assessment | 60

C. Code Quality Recommendations
The following recommendations are not associated with specific vulnerabilities. However,
they enhance code readability and may prevent the introduction of vulnerabilities in the
future.

● Initialize the canOverwrite variable in push
(optimistic-ethereum/libraries/utils/Lib_RingBuffer.sol#L94-L95) . Explicit
initialization will make the code easier to understand, maintain, and review.

● Initialize the local variables in _getUpdatedTrieRoot
(optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol#L495-L497) . Explicit
initialization will make the code easier to understand, maintain, and review.

● Consider validating the inputs for the fromNibbles function
(optimistic-ethereum/libraries/utils/Lib_BytesUtils.sol#L212-L226) . This
function accepts inputs that are not produced by the toNibbles function and
produces unexpected results. Additional validation will protect against untrusted
inputs, if this function is re-used in the future.

● Consider renaming l1TxOrigin as l1MsgSender .
(optimistic-ethereum/libraries/codec/Lib_OVMCodec.sol#L82) Lib_OVMCodec
defines a struct Transaction with a field called l1TxOrigin . If the transaction is a
sequenced one, it is equal to 0x0 . If the transaction is from the queue, it is set to the
msg.sender of that transaction, not the tx.origin . As such, we feel this field should
be called l1MsgSender.

© 2020 Trail of Bits Optimism OVM Assessment | 61

